赞
踩
美洲狮优化算法(Puma Optimizar Algorithm ,POA)由Benyamin Abdollahzadeh等人于2024年提出,其灵感来自美洲狮的智慧和生活。在该算法中,在探索和开发的每个阶段都提出了独特而强大的机制,这提高了算法对各种优化问题的性能。此外,该算法还提出了一种新型的智能机制,即相变的超启发式机制(PI),使用这种机制,PO算法可以在优化操作期间执行相变操作,并平衡探索和开发,同时探索和开发都会根据问题的性质自动调整。2024最新算法:美洲狮优化算法(Puma Optimizar Algorithm ,POA)求解23个基准函数(提供MATLAB代码)-CSDN博客
参考文献:
[1]Abdollahzadeh, B., Khodadadi, N., Barshandeh, S. et al. Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning. Cluster Comput (2024). Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning | Cluster Computing
- clc
- clear
- close all
- tic
- %% 地图
- global G S E
- G=[0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;
- 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0;
- 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0;
- 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0;
- 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0;
- 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0;
- 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0;
- 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;
- 0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0;
- 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0;
- 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0;
- 0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;
- 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0;
- 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0;
- 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0;
- 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0;
- 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 0;
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0;
- 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0;
- 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0;];
- for i=1:20/2
- for j=1:20
- m=G(i,j);
- n=G(21-i,j);
- G(i,j)=n;
- G(21-i,j)=m;
- end
- end
- %%
- S = [1 1]; %起点
- E = [20 20]; %终点
- [ub,dimensions] = size(G);
- dim = dimensions - 2;
- %% 参数设置
- Max_iter= 200; % 最大迭代次数
- SearchAgents_no = 50; % 种群数量
- X_min = 1;
- lb=1;
- fobj=@(x)fitness(x);
- [Best_score,Best_NC,Convergence_curve]=POA(SearchAgents_no,Max_iter,lb,ub,dim,fobj);
-
-
- toc
- %% 结果分析
- global_best = round(Best_NC);
- figure(1)
- plot(Convergence_curve,'k-','linewidth',2.5)
- xlabel('Iteration');
- ylabel('Fitness');
- legend('POA')
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。