当前位置:   article > 正文

[深度学习 - 技巧] 通过修改预训练模型权重层修改模型输出_在深度学习中哪种技术用于在训练过程中调整模型权重的过程

在深度学习中哪种技术用于在训练过程中调整模型权重的过程

前阵子做了个以图搜图特征编码模型啊。(详情看上一篇
但是由于图库数据较大(上亿数据),所以2048维的特征编码存储量太大,一个特征8KB,用户并发起来服务器也够呛,而且java那边相似度计算也慢。

由于图库里面的图形都比较简单,老大觉得512够用了,要我修改网络输出到512维的特征编码。

但是模型网络那边提供的预训练模型,Resnet50只有输出层是2048维的。我们也不想换Resnet18(可能会较大的降低精度)。

因此我只能够再Resnet50的预训练权重包上面下手。

1. 修改网络结构

首先,我先看我的网络结构。(在这个位置:cirtorch/networks/imageretrievalnet.py)

根据我的网络初始化设置,我用的预训练包是Resnet50_w,也就是再Resnet50后面加了一层全连接网络。输出1 * 2048的特征编码。(如果可视化的看网络结构可以用https://netron.app 如下图所示。)
resnet50_2048
因此我只要修改全连接层的输入输出就行,输入保持不变2048(因为Resnet最后一层输出是 2048),输出改为512。

    if whitening:
        whiten = nn.Linear(2048, dim, bias=True)
    # 这里再上面设置了dim = 512
  • 1
  • 2
  • 3

修改完我们的网络结构后,我们就要用这个网络加载权重,可是我们的权重包就跟上图一样,最后一层搭配不上。那我们需要怎么加载网络呢。

2. 修改模型权重

如下图所示,我们希望我们的模型权重最后一层长这样。
resnet50_512
那就好办了。只需要再加载模型后,将weights的第一维砍掉3/4,同样bias也砍掉3/4。就可以完成加载权重了。如下代码。

temp_state = torch.load('weights/resnet50_dim2048.pth.tar')
temp_state['state_dict']['whiten.weight'] = temp_state['state_dict']['whiten.weight'][0::4, ::]
temp_state['state_dict']['whiten.bias'] = temp_state['state_dict']['whiten.bias'][0::4]
  • 1
  • 2
  • 3

修改完后,要记得用新的预训练模型重新进行训练。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/255231
推荐阅读
相关标签
  

闽ICP备14008679号