当前位置:   article > 正文

CP04大语言模型ChatGLM3-6B特性代码解读(2)

cp04大语言模型chatglm3-6b特性代码解读

CP04大语言模型ChatGLM3-6B特性代码解读(2)


对话模式、工具模式、代码解释器模式例程阅读理解。
在这里插入图片描述

ChatGLM3-6B已经进行了中文场景的训练,可以直接运用于中文场景。在生成模型中使用自定义LogitsProcessor中怎样使用logits processor来改变生成过程中的概率,进而改变生成的结果。
CLI代码包括:

conversation.py
demo_ci.py
main.py
client.py
demo_chat.py
demo_tool.py
tool_registry.py

上一篇解读了client.py和conversation.py,本篇解读完其他代码。

构建对话demo_chat.py

首先定义client对象,然后调用client.generate_stream()方法获得response。

定义client对象

from client import get_client
from conversation import postprocess_text, preprocess_text, Conversation, Role

client = get_client()
  • 1
  • 2
  • 3
  • 4

与LLM进行对话

  • 定义main,输入参数
def main(
        prompt_text: str,
        system_prompt: str,
        top_p: float = 0.8,
        temperature: float = 0.95,
        repetition_penalty: float = 1.0,
        max_new_tokens: int = 1024,
        retry: bool = False
):
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 在for循环中进行对话
        for response in client.generate_stream(
                system_prompt,
                tools=None,
                history=history,
                do_sample=True,
                max_new_tokens=max_new_tokens,
                temperature=temperature,
                top_p=top_p,
                stop_sequences=[str(Role.USER)],
                repetition_penalty=repetition_penalty,
        ):
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

构建工具调用demo_tool.py

之前的文章《CP01大语言模型ChatGLM3-6B使用CLI代码进行代码调用初体验》介绍了工具调用,可以发现一个完整的工具调用需要在<|system|><|user|><|assistant|><|observation|>这几个Role之间进行一轮对话,才能完成。demo_tool.py中也是用for response in client.generate_stream来完成一轮对话,以实现工具调用。
在这里插入图片描述
当前8℃,百度查询今天是3-8℃:
在这里插入图片描述

定义client对象

client = get_client()
  • 1

定义工具调用提示词

按照json结构定义一个变量,定义名为get_current_weather的工具:

EXAMPLE_TOOL = {
    "name": "get_current_weather",
    "description": "Get the current weather in a given location",
    "parameters": {
        "type": "object",
        "properties": {
            "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA",
            },
            "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
        },
        "required": ["location"],
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

定义main,传递参数

def main(
        prompt_text: str,
        top_p: float = 0.2,
        temperature: float = 0.1,
        repetition_penalty: float = 1.1,
        max_new_tokens: int = 1024,
        truncate_length: int = 1024,
        retry: bool = False
):
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

在main方法中,实现一个for循环,只循环5次,以完成工具调用Role之间的一轮对话

注意这里system没有传入提示词。

        for _ in range(5):
            output_text = ''
            for response in client.generate_stream(
                    system=None,
                    tools=tools,
                    history=history,
                    do_sample=True,
                    max_new_tokens=max_new_tokens,
                    temperature=temperature,
                    top_p=top_p,
                    stop_sequences=[str(r) for r in (Role.USER, Role.OBSERVATION)],
                    repetition_penalty=repetition_penalty,
            ):
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

for response in client.generate_stream循环内对response按条件处理

                token = response.token
                if response.token.special:
                    print("\n==Output:==\n", output_text)
                    match token.text.strip():
                        case '<|user|>':
                            append_conversation(Conversation(
                                Role.ASSISTANT,
                                postprocess_text(output_text),
                            ), history, markdown_placeholder)
                            return
                        # Initiate tool call
                        case '<|assistant|>':
                            append_conversation(Conversation(
                                Role.ASSISTANT,
                                postprocess_text(output_text),
                            ), history, markdown_placeholder)
                            output_text = ''
                            message_placeholder = placeholder.chat_message(name="tool", avatar="assistant")
                            markdown_placeholder = message_placeholder.empty()
                            continue
                        case '<|observation|>':
                            tool, *call_args_text = output_text.strip().split('\n')
                            call_args_text = '\n'.join(call_args_text)

                            append_conversation(Conversation(
                                Role.TOOL,
                                postprocess_text(output_text),
                                tool,
                            ), history, markdown_placeholder)
                            message_placeholder = placeholder.chat_message(name="observation", avatar="user")
                            markdown_placeholder = message_placeholder.empty()

                            try:
                                code = extract_code(call_args_text)
                                args = eval(code, {'tool_call': tool_call}, {})
                            except:
                                st.error('Failed to parse tool call')
                                return

                            output_text = ''

                            if manual_mode:
                                st.info('Please provide tool call results below:')
                                return
                            else:
                                with markdown_placeholder:
                                    with st.spinner(f'Calling tool {tool}...'):
                                        observation = dispatch_tool(tool, args)

                                if len(observation) > truncate_length:
                                    observation = observation[:truncate_length] + ' [TRUNCATED]'
                                append_conversation(Conversation(
                                    Role.OBSERVATION, observation
                                ), history, markdown_placeholder)
                                message_placeholder = placeholder.chat_message(name="assistant", avatar="assistant")
                                markdown_placeholder = message_placeholder.empty()
                                st.session_state.calling_tool = False
                                break
                        case _:
                            st.error(f'Unexpected special token: {token.text.strip()}')
                            return

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

构建代码解释器demo_ci.py

代码解释器与代码调用实现过程类似,是一种特殊的工具调用。也是在<|system|><|user|><|assistant|><|observation|>这几个Role之间进行一轮对话,才能完成
,在这几个Role之外,多了<|interpreter|>。

定义代码解释器提示词

SYSTEM_PROMPT = '你是一位智能AI助手,你叫ChatGLM,你连接着一台电脑,但请注意不能联网。在使用Python解决任务时,你可以运行代码并得到结果,如果运行结果有错误,你需要尽可能对代码进行改进。你可以处理用户上传到电脑上的文件,文件默认存储路径是/mnt/data/。'
  • 1

定义IPY内核以及client对象

IPYKERNEL = os.environ.get('IPYKERNEL', 'chatglm3-demo')

client = get_client()
  • 1
  • 2
  • 3

在main方法中,实现一个for循环,只循环5次,以完成工具调用Role之间的一轮对话

注意这里system参入了提示词。

for _ in range(5):
            output_text = ''
            for response in client.generate_stream(
                    system=SYSTEM_PROMPT,
                    tools=None,
                    history=history,
                    do_sample=True,
                    max_new_token=max_new_tokens,
                    temperature=temperature,
                    top_p=top_p,
                    stop_sequences=[str(r) for r in (Role.USER, Role.OBSERVATION)],
                    repetition_penalty=repetition_penalty,
            ):
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

for response in client.generate_stream循环内对response按条件处理

                if response.token.special:
                    print("\n==Output:==\n", output_text)
                    match token.text.strip():
                        case '<|user|>':
                            append_conversation(Conversation(
                                Role.ASSISTANT,
                                postprocess_text(output_text),
                            ), history, markdown_placeholder)
                            return
                        # Initiate tool call
                        case '<|assistant|>':
                            append_conversation(Conversation(
                                Role.ASSISTANT,
                                postprocess_text(output_text),
                            ), history, markdown_placeholder)
                            message_placeholder = placeholder.chat_message(name="interpreter", avatar="assistant")
                            markdown_placeholder = message_placeholder.empty()
                            output_text = ''
                            continue
                        case '<|observation|>':
                            code = extract_code(output_text)

                            display_text = output_text.split('interpreter')[-1].strip()
                            append_conversation(Conversation(
                                Role.INTERPRETER,
                                postprocess_text(display_text),
                            ), history, markdown_placeholder)
                            message_placeholder = placeholder.chat_message(name="observation", avatar="user")
                            markdown_placeholder = message_placeholder.empty()
                            output_text = ''

                            with markdown_placeholder:
                                with st.spinner('Executing code...'):
                                    try:
                                        res_type, res = execute(code, get_kernel())
                                    except Exception as e:
                                        st.error(f'Error when executing code: {e}')
                                        return
                            print("Received:", res_type, res)
                            if truncate_length:
                                if res_type == 'text' and len(res) > truncate_length:
                                    res = res[:truncate_length] + ' [TRUNCATED]'

                            append_conversation(Conversation(
                                Role.OBSERVATION,
                                '[Image]' if res_type == 'image' else postprocess_text(res),
                                tool=None,
                                image=res if res_type == 'image' else None,
                            ), history, markdown_placeholder)
                            message_placeholder = placeholder.chat_message(name="assistant", avatar="assistant")
                            markdown_placeholder = message_placeholder.empty()
                            output_text = ''
                            break
                        case _:
                            st.error(f'Unexpected special token: {token.text.strip()}')
                            break
                output_text += response.token.text
                display_text = output_text.split('interpreter')[-1].strip()
                markdown_placeholder.markdown(postprocess_text(display_text + '▌'))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59

代码解释器调用的提示词过程

在这里插入图片描述

观察以下过程,发现代码解释器在运行前,先注册了一个工具[registered tool],名为’name’: ‘random_number_generator’。不难看出,代码解释器就是一个工具调用的过程。

Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████| 7/7 [01:09<00:00, 9.88s/it]
[registered tool] {‘description’: ‘Generates a random number x, s.t. range[0] <= x < range[1]’,
‘name’: ‘random_number_generator’,
‘params’: [{‘description’: ‘The random seed used by the generator’,
‘name’: ‘seed’,
‘required’: True,
‘type’: ‘int’},
{‘description’: ‘The range of the generated numbers’,
‘name’: ‘range’,
‘required’: True,
‘type’: ‘tuple[int, int]’}]}
[registered tool] {‘description’: ‘Get the current weather for city_name’,
‘name’: ‘get_weather’,
‘params’: [{‘description’: ‘The name of the city to be queried’,
‘name’: ‘city_name’,
‘required’: True,
‘type’: ‘str’}]}
[registered tool] {‘description’: ‘Use shell to run command’,
‘name’: ‘get_shell’,
‘params’: [{‘description’: ‘The command should run in Linux shell’,
‘name’: ‘query’,
‘required’: True,
‘type’: ‘str’}]}

== Input ==
请生成一个代码,实现心形,并绘制

History
[{‘role’: ‘system’, ‘content’: ‘你是一位智能AI助手,你叫ChatGLM,你连接着一台电脑,但请注意不能联网。在使用Python解决任务时,你可以运行代码并得到结果,如果运行结果有错误,你需要尽可能对代码进行改进。你可以处理用户上传到电脑上的文件,文件默认存储路径是/mnt/data/。’}, {‘role’: ‘user’, ‘content’: ‘请生成一个代码,实现心形’}, {‘role’: ‘assistant’, ‘content’: “好的,我将为您提供一个简单的Python代码来绘制一个心形。这里我们将使用matplotlib库,这是一个用于绘制2D图形的强大工具。\n\npython\nimport matplotlib.pyplot as plt\nimport numpy as np\n\ndef draw_heart(size=600, color='red'):\n # 参数方程\n x = size * np.cos(np.linspace(0, np.pi, size))\n y = size * np.sin(np.linspace(0, np.pi, size))\n \n plt.figure(figsize=(8, 8))\n plt.plot(x, y, 'r')\n plt.axis('equal') # 确保心形在各个方向上均勻分布\n plt.title('Heart Shape')\n plt.xlabel('X-axis')\n plt.ylabel('Y-axis')\n plt.grid(True)\n plt.gca().set_aspect('equal', adjustable='box')\n plt.show()\n\ndraw_heart()\n\n\n上述代码”}]

Output:
interpreter

import matplotlib.pyplot as plt
import numpy as np

def draw_heart(size=600, color='red'):
   # 参数方程
   x = size * np.cos(np.linspace(0, np.pi, size))
   y = size * np.sin(np.linspace(0, np.pi, size))
   
   plt.figure(figsize=(8, 8))
   plt.plot(x, y, 'r')
   plt.axis('equal')  # 确保心形在各个方向上均勻分布
   plt.title('Heart Shape')
   plt.xlabel('X-axis')
   plt.ylabel('Y-axis')
   plt.grid(True)
   plt.gca().set_aspect('equal', adjustable='box')
   plt.show()

draw_heart()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

Backend kernel started with the configuration: /tmp/tmpkspqb3jz.json
{‘control_port’: 60651,
‘hb_port’: 56547,
‘iopub_port’: 57651,
‘ip’: ‘127.0.0.1’,
‘key’: b’f588594c-281de24e935be8cae16fda73’,
‘shell_port’: 33721,
‘signature_scheme’: ‘hmac-sha256’,
‘stdin_port’: 41243,
‘transport’: ‘tcp’}
Code kernel started.
Received: image <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=695x395 at 0x7F0FE3C57C70>

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号