赞
踩
YOLOv8的原来的分割样式如图:
这里实现上述预测整个目录的代码:
import glob from PIL import Image from ultralytics import YOLO import csv import os from os.path import join , basename import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F import cv2 # 模型路径 model = YOLO(r'F:\Deep_Learning\Model\YOLOv8_Seg\runs\segment\train\weights\best.pt') # 图片路径 source = 'F:/CRACK500/val/images' # 预测图片的保存目录 pred_dir = r'F:\Deep_Learning\Model\YOLOv8_Seg\Pre_Dir' # 如果保存的话: results = model(source=source,save=True, name='./Pre_Dir',show_labels=False,show_conf=False,boxes=False) # 如果不保存的话: # results = model(source=source,show_labels=False,show_conf=False,boxes=False) for result in results: image_name = basename(result.path) # 提取图片名称 mask_name = f"{os.path.splitext(image_name)[0]}.png" # 根据图片名称生成保存结果的名称 pred_image_path = join(r'F:\Deep_Learning\Model\YOLOv8_Seg\Dataset\mask', mask_name)# 图片保存路径 # 检测到裂缝时: if result.masks is not None and len(result.masks) > 0: masks_data = result.masks.data for index, mask in enumerate(masks_data): mask = mask.cpu().numpy() * 255 # cv2.imwrite(f'./output_{index}.png', mask) cv2.imwrite(pred_image_path , mask)
其代码目录安排如下:
--------------------------------------------------------------------------------------------------------------------------------
下面是转化后样式:
转换保存的目录:
转换代码:
import glob from PIL import Image from ultralytics import YOLO import csv import os from os.path import join , basename import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F import cv2 # 模型路径 model = YOLO(r'F:\Deep_Learning\Model\YOLOv8_Seg\runs\segment\train\weights\best.pt') # 图片路径 source = 'F:/CRACK500/val/images' # 如果保存的话: #results = model(source=source,save=True, name='./Pre_Dir',show_labels=False,show_conf=False,boxes=False) # 如果不保存的话: results = model(source=source,show_labels=False,show_conf=False,boxes=False) for result in results: image_name = basename(result.path) # 提取图片名称 mask_name = f"{os.path.splitext(image_name)[0]}.png" # 根据图片名称生成保存结果的名称 pred_image_path = join(r'F:\Deep_Learning\Model\YOLOv8_Seg\Dataset\mask', mask_name) # 检测到裂缝时: if result.masks is not None and len(result.masks) > 0: masks_data = result.masks.data for index, mask in enumerate(masks_data): mask = mask.cpu().numpy() * 255 cv2.imwrite(pred_image_path , mask) # 检测不到裂缝时: else: width , height = 640 , 360 black_image = np.zeros((height , width , 3) , dtype=np.uint8) # 保存全黑的图像为PNG文件 cv2.imwrite(pred_image_path , black_image)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。