赞
踩
混合专家模型(Mixture of Experts, MoE)是一种用于解决大规模数据集上的复杂任务的神经网络模型。它可以自适应地组合多个专家网络来处理不同的数据子集,从而提高模型的泛化能力和性能。本文将对MoE模型的原理进行讲解,包括其数学公式和代码实现。
MoE模型由两部分组成:门控网络和专家网络。门控网络用于选择哪个专家网络处理输入数据,而每个专家网络负责处理相应的数据子集。
下图展示了一个有三个专家的两路数据并行MoE模型进行前向计算的方式.
下图展示了一个有六个专家网络的模型被两路模型并行地训练.
注意专家1-3被放置在第一个计算单元上, 而专家4-6被放置在第二个计算单元上.
门控网络用于选择哪个专家网络处理输入数据。它的输出结果是一个概率向量,表示每个专家网络被选择的概率。MoE模型中常用的门控网络是Softmax门控网络和Gating Tree门控网络。
Softmax门控网络是一种基于Softmax函数的门控网络。它将输入数
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。