赞
踩
一、前言
本篇记录 VGG Block和Resnet Block 经典结构
二、VGGblock
VGG Block 可由两层conv3或三层conv3组成,两层的感受野和一层conv5一样,三层conv3的感受野和一层conv7是一样的,但是能够减少计算量,以下为不同的VGGblock搭配的VGG网络
包含两层conv3的VGG block 代码如下,CBR-CBR,无池化层
- class VGGBlock(nn.Module):
- def __init__(self, in_channels, middle_channels, out_channels, act_func=nn.ReLU(inplace=True)):
- super(VGGBlock, self).__init__()
- self.act_func = act_func
- self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
- self.bn1 = nn.BatchNorm2d(middle_channels)
- self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
- self.bn2 = nn.BatchNorm2d(out_channels)
-
- def forward(self, x):
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.act_func(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.act_func(out)
-
- return out
三、Resnet block
resnet 有2种网络结构
BasicBlock
结构 和 BottleNeck 结构
5种不同层数的ResNet
结构图,如下所示:
- #代码参考自pytorch 官方 https://pytorch.org/docs/0.4.0/_modules/torchvision/models/resnet.html
-
- import torch.nn as nn
- import math
- import torch
-
-
- def conv3x3(in_planes, out_planes, stride=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=1, bias=False)
-
-
- class BasicBlock(nn.Module):
- expansion = 1
-
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(BasicBlock, self).__init__()
- self.conv1 = conv3x3(inplanes, planes, stride)
- self.bn1 = nn.BatchNorm2d(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = nn.BatchNorm2d(planes)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- class Bottleneck(nn.Module):
- expansion = 4
-
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
- padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
- self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
- self.bn3 = nn.BatchNorm2d(planes * 4)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
-
- def forward(self, x):
- residual = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- if self.downsample is not None:
- residual = self.downsample(x)
-
- out += residual
- out = self.relu(out)
-
- return out
-
-
- class ResNet(nn.Module):
-
- def __init__(self, block, layers, num_classes=1000):
- self.inplanes = 64
- super(ResNet, self).__init__()
- self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
- bias=False)
- self.bn1 = nn.BatchNorm2d(64)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.layer1 = self._make_layer(block, 64, layers[0])
- self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
- self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
- self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
- #self.avgpool = nn.AvgPool2d(7, stride=1)
- self.avgpool = nn.AdaptiveAvgPool2d(1)
- self.fc = nn.Linear(512 * block.expansion, num_classes)
-
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
- m.weight.data.normal_(0, math.sqrt(2. / n))
- elif isinstance(m, nn.BatchNorm2d):
- m.weight.data.fill_(1)
- m.bias.data.zero_()
-
- def _make_layer(self, block, planes, blocks, stride=1):
- downsample = None
- if stride != 1 or self.inplanes != planes * block.expansion:
- downsample = nn.Sequential(
- nn.Conv2d(self.inplanes, planes * block.expansion,
- kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(planes * block.expansion),
- )
-
- layers = []
- layers.append(block(self.inplanes, planes, stride, downsample))
- self.inplanes = planes * block.expansion
- for i in range(1, blocks):
- layers.append(block(self.inplanes, planes))
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.avgpool(x)
- x = x.view(x.size(0), -1)
- x = self.fc(x)
-
- return x
-
-
- def resnet18(pretrained=False, num_classes = 1000 ):
- """Constructs a ResNet-18 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(BasicBlock, [2, 2, 2, 2] )
- if pretrained:
- model.load_state_dict( torch.load("resnet18-5c106cde.pth") )
- num_features=model.fc.in_features
- model.fc=nn.Linear(num_features,num_classes)
-
- return model
-
- def resnet50(pretrained=False, **kwargs):
- """Constructs a ResNet-50 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
- if pretrained:
- model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
- return model
-
-
-
- def resnet101(pretrained=False, **kwargs):
- """Constructs a ResNet-101 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
- if pretrained:
- model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
- return model
-
-
-
- def resnet152(pretrained=False, **kwargs):
- """Constructs a ResNet-152 model.
- Args:
- pretrained (bool): If True, returns a model pre-trained on ImageNet
- """
- model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
- if pretrained:
- model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
- return model
-
-
- model = resnet18( pretrained = True, num_classes = 7 )
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。