赞
踩
$\times$ $\pm$
:
×
\times
×
±
\pm
±$\div$ $\mid$
:
÷
\div
÷
∣
\mid
∣$\cdot$
:
⋅
\cdot
⋅$\circ$
:
∘
\circ
∘$\bigotimes$
:
⨂
\bigotimes
⨂$\bigoplus$
:
⨁
\bigoplus
⨁$\leq$ $\geq$ $\neq$
:
≤
\leq
≤
≥
\geq
≥
≠
\neq
=$\approx$
:
≈
\approx
≈$\int$ $\iint$ $\oint$
:
∫
\int
∫
∬
\iint
∬
∮
\oint
∮$\infty$
:
∞
\infty
∞$\nabla$
:
∇
\nabla
∇$\because$ 和 $\therefore$
∵
\because
∵ 和
∴
\therefore
∴$\forall$ 和 $\exists$
:
∀
\forall
∀ 和
∃
\exists
∃$\in$ 和 $\notin$
:
∈
\in
∈ 和
∉
\notin
∈/$\subset$,$\subseteq$,$\emptyset$
:
⊂
\subset
⊂,
⊆
\subseteq
⊆,
∅
\emptyset
∅$\bigcap$ 和 $\bigcup$
:
⋂
\bigcap
⋂ 和
⋃
\bigcup
⋃$\bigvee$ 和 $\bigwedge$
:
⋁
\bigvee
⋁ 和
⋀
\bigwedge
⋀$\hat{y}$
:
y
^
\hat{y}
y^$\overline{a+b+c+d}$
:
a
+
b
+
c
+
d
‾
\overline{a+b+c+d}
a+b+c+d三角函数:$$\sin$$
:
sin
\sin
sin
分数:
$\dfrac{2}{3}$,$\tfrac{2}{3}$
:
2
3
\dfrac{2}{3}
32,
2
3
\tfrac{2}{3}
32$$\frac{7x+5}{2+y^2}$$
效果为:
7
x
+
5
2
+
y
2
\frac{7x+5}{2+y^2}
2+y27x+5$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
:
x
=
−
b
±
b
2
−
4
a
c
2
a
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
x=2a−b±b2−4ac
对数函数: $$\ln15, \log_2 10 , \lg7$$
:
ln
15
,
log
2
10
,
lg
7
\ln15, \log_2 10 , \lg7
ln15,log210,lg7
关系运算符: $$\pm \times \div \sum \prod \neq \leq \geq$$
:
±
×
÷
∑
∏
≠
≤
≥
\pm \times \div \sum \prod \neq \leq \geq
±×÷∑∏=≤≥
上标:
$A^2$、$A^{上标}$
:
A
2
A^2
A2、
A
上
标
A^{上标}
A上标$$A^2 \; A^{上标} \; \mathop{A}\limits^2$$
A
2
A
上
标
A
2
A^2 \; A^{上标} \; \mathop{A}\limits^2
A2A上标A2下标:
$A_2$、$A_{下标}$
A
2
A_2
A2、
A
下
标
A_{下标}
A下标$$A_2 \; A_{下标}\; \mathop{A}\limits_2$$
:
A
2
A
下
标
A
2
A_2 \; A_{下标}\; \mathop{A}\limits_2
A2A下标2A$$z=z_l$$
:
z
=
z
l
z=z_l
z=zl开根号:
$\sqrt[开方数]{参数}$
:
参
数
开
方
数
\sqrt[开方数]{参数}
开方数参数
$$\sqrt[开方数]{参数}$$
:
参
数
开
方
数
\sqrt[开方数]{参数}
开方数参数
$$\sqrt{2};\sqrt[n]{3}$$
:
2
;
3
n
\sqrt{2};\sqrt[n]{3}
2
;n3
$$ \sqrt x * \sqrt[3] x * \sqrt[-1] x $$
:
x
∗
x
3
∗
x
−
1
\sqrt x * \sqrt[3] x * \sqrt[-1] x
x
∗3x
∗−1x
求和:
$\sum$
:
∑
\sum
∑$\sum_{i=0}^n$
:
∑
i
=
0
n
\sum_{i=0}^n
∑i=0n$$\sum ^2_3\;\sum \nolimits^2_3$$
:
∑
3
2
∑
3
2
\sum ^2_3\;\sum \nolimits^2_3
3∑2∑32积分:
$\int$
:
∫
\int
∫$$\int ^2_3\;\int \limits^2_3$$
:
∫
3
2
∫
3
2
\int ^2_3\;\int \limits^2_3
∫323∫2$$\int ^2_3 x^2 {\rm d}x$$
:
∫
3
2
x
2
d
x
\int ^2_3 x^2 {\rm d}x
∫32x2dx$$\iint$$
:
∬
\iint
∬极限:
$$\lim_{n\rightarrow+\infty} n$$
:
lim
n
→
+
∞
n
\lim_{n\rightarrow+\infty} n
n→+∞limn$$\begin{aligned} \lim_{a\to \infty} \tfrac{1}{a} \end{aligned}$$
:
lim
a
→
∞
1
a
lima→∞1a累加:$$\sum \frac{1}{i^2}$$
:
∑
1
i
2
\sum \frac{1}{i^2}
∑i21
累乘:
$$\prod \frac{1}{i^2}$$
:
∏
1
i
2
\prod \frac{1}{i^2}
∏i21$$ \prod_{{ \begin{gathered} 1\le i \le n\\ 1\le j \le m \end{gathered} }} M_{i,j} $$
:矢量:$$\vec{a} \cdot \vec{b}=0$$
: $$
a
⃗
⋅
b
⃗
=
0
\vec{a} \cdot \vec{b}=0
a
⋅b
=0
$$\alpha \beta \gamma \delta \epsilon $$
:
α
β
γ
δ
ϵ
\alpha \beta \gamma \delta \epsilon
αβγδϵ
$$ \zeta \eta \theta \vartheta \iota $$
:
ζ
η
θ
ϑ
ι
\zeta \eta \theta \vartheta \iota
ζηθϑι
$$ \kappa \lambda \mu \nu \xi $$
:
κ
λ
μ
ν
ξ
\kappa \lambda \mu \nu \xi
κλμνξ
$$o \pi \varpi \rho \varrho $$
:
o
π
ϖ
ρ
ϱ
o \pi \varpi \rho \varrho
oπϖρϱ
$$ \sigma \varsigma \tau \upsilon \phi $$
:
σ
ς
τ
υ
ϕ
\sigma \varsigma \tau \upsilon \phi
σςτυϕ
$$ \varphi \chi \psi \omega A $$
:
φ
χ
ψ
ω
A
\varphi \chi \psi \omega A
φχψωA
$$ B \Gamma \varGamma \Delta \varDelta $$
:
B
Γ
Γ
Δ
Δ
B \Gamma \varGamma \Delta \varDelta
BΓΓΔΔ
$$ E Z H \Theta \varTheta $$
:
E
Z
H
Θ
Θ
E Z H \Theta \varTheta
EZHΘΘ
$$ I K \Lambda \varLambda M $$
:
I
K
Λ
Λ
M
I K \Lambda \varLambda M
IKΛΛM
$$ N \Xi \varXi O \Pi $$
:
N
Ξ
Ξ
O
Π
N \Xi \varXi O \Pi
NΞΞOΠ
$$ \varPi P \Sigma \Upsilon \varUpsilon $$
:
Π
P
Σ
Υ
Υ
\varPi P \Sigma \Upsilon \varUpsilon
ΠPΣΥΥ
$$ \Phi \varPhi X \varPsi \Omega \varOmega$$
:
Φ
Φ
X
Ψ
Ω
Ω
\Phi \varPhi X \varPsi \Omega \varOmega
ΦΦXΨΩΩ
矩阵:
$$ \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right]\tag{2}$$
[
1
2
3
4
5
6
7
8
9
]
(2)
\left[ 123456789
分段函数:
$$
f(x) = \left\{
\begin{array}{lr}
x^2 & : x < 0\\
x^3 & : x \ge 0
\end{array}
\right.
$$
$$
u(x) =
\begin{cases}
\exp{x} & \text{if } x \geq 0 \\
1 & \text{if } x < 0
\end{cases}
$$
f
(
x
)
=
{
x
2
:
x
<
0
x
3
:
x
≥
0
f(x) = \left\{ x2:x<0x3:x≥0
u
(
x
)
=
{
exp
x
if
x
≥
0
1
if
x
<
0
u(x) = {expxif x≥01if x<0
方程组:
$$
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
$$
{
a
1
x
+
b
1
y
+
c
1
z
=
d
1
a
2
x
+
b
2
y
+
c
2
z
=
d
2
a
3
x
+
b
3
y
+
c
3
z
=
d
3
\left\{ a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
线性模型:
$$
h(\theta) = \sum_{j = 0} ^n \theta_j x_j
$$
h ( θ ) = ∑ j = 0 n θ j x j h(\theta) = \sum_{j = 0} ^n \theta_j x_j h(θ)=j=0∑nθjxj
均方误差:
$$
J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2
$$
J ( θ ) = 1 2 m ∑ i = 0 m ( y i − h θ ( x i ) ) 2 J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2 J(θ)=2m1i=0∑m(yi−hθ(xi))2
批量梯度下降:
$$
\frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j
$$
∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) x j i \frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j ∂θj∂J(θ)=−m1i=0∑m(yi−hθ(xi))xji
$$
\bowtie \Join \propto \varpropto \multimap \pitchfork \therefore \because = \neq \equiv \approx \sim \simeq \backsimeq \approxeq \cong \ncong \smile \frown \asymp \smallfrown \smallsmile \between \prec \succ \nprec \nsucc \preceq \succeq \npreceq \nsucceq \preccurlyeq \succcurlyeq \curlyeqprec \curlyeqsucc \precsim \succsim \precnsim \succnsim \precapprox \succapprox \precnapprox \succnapprox \perp \vdash \dashv \nvdash \Vdash \Vvdash \models \vDash \nvDash \nVDash \mid \nmid \parallel \nparallel \shortmid \nshortmid \shortparallel \nshortparallel < > \nless \ngtr \lessdot \gtrdot \ll \gg \lll \ggg \leq \geq \lneq \gneq \nleq \ngeq \leqq \geqq \lneqq \gneqq \lvertneqq \gvertneqq \nleqq \ngeqq \leqslant \geqslant \nleqslant \ngeqslant \eqslantless \eqslantgtr \lessgtr \gtrless \lesseqgtr \gtreqless \lesseqqgtr \gtreqqless \lesssim \gtrsim \lnsim \gnsim \lessapprox \gtrapprox \lnapprox \gnapprox \vartriangleleft \vartriangleright \ntriangleleft \ntriangleright \trianglelefteq \trianglerighteq \ntrianglelefteq \ntrianglerighteq \blacktriangleleft \blacktriangleright \subset \supset \subseteq \supseteq \subsetneq \supsetneq \varsubsetneq \varsupsetneq \nsubseteq \nsupseteq \subseteqq \supseteqq \subsetneqq \supsetneqq \nsubseteqq \nsupseteqq \backepsilon \Subset \Supset \sqsubset \sqsupset \sqsubseteq \sqsupseteq
$$
⋈ ⋈ ∝ ∝ ⊸ ⋔ ∴ ∵ = ≠ ≡ ≈ ∼ ≃ ⋍ ≊ ≅ ≆ ⌣ ⌢ ≍ ⌢ ⌣ ≬ ≺ ≻ ⊀ ⊁ ⪯ ⪰ ⋠ ⋡ ≼ ≽ ⋞ ⋟ ≾ ≿ ⋨ ⋩ ⪷ ⪸ ⪹ ⪺ ⊥ ⊢ ⊣ ⊬ ⊩ ⊪ ⊨ ⊨ ⊭ ⊯ ∣ ∤ ∥ ∦ ∣ ∤ ∥ ∦ < > ≮ ≯ ⋖ ⋗ ≪ ≫ ⋘ ⋙ ≤ ≥ ⪇ ⪈ ≰ ≱ ≦ ≧ ≨ ≩ ≨ ≩ ≰ ≱ ⩽ ⩾ ≰ ≱ ⪕ ⪖ ≶ ≷ ⋚ ⋛ ⪋ ⪌ ≲ ≳ ⋦ ⋧ ⪅ ⪆ ⪉ ⪊ ⊲ ⊳ ⋪ ⋫ ⊴ ⊵ ⋬ ⋭ ◀ ▶ ⊂ ⊃ ⊆ ⊇ ⊊ ⊋ ⊊ ⊋ ⊈ ⊉ ⫅ ⫆ ⫋ ⫌ ⊈ ⊉ ∍ ⋐ ⋑ ⊏ ⊐ ⊑ ⊒ \bowtie \Join \propto \varpropto \multimap \pitchfork \therefore \because = \neq \equiv \approx \sim \simeq \backsimeq \approxeq \cong \ncong \smile \frown \asymp \smallfrown \smallsmile \between \prec \succ \nprec \nsucc \preceq \succeq \npreceq \nsucceq \preccurlyeq \succcurlyeq \curlyeqprec \curlyeqsucc \precsim \succsim \precnsim \succnsim \precapprox \succapprox \precnapprox \succnapprox \perp \vdash \dashv \nvdash \Vdash \Vvdash \models \vDash \nvDash \nVDash \mid \nmid \parallel \nparallel \shortmid \nshortmid \shortparallel \nshortparallel < > \nless \ngtr \lessdot \gtrdot \ll \gg \lll \ggg \leq \geq \lneq \gneq \nleq \ngeq \leqq \geqq \lneqq \gneqq \lvertneqq \gvertneqq \nleqq \ngeqq \leqslant \geqslant \nleqslant \ngeqslant \eqslantless \eqslantgtr \lessgtr \gtrless \lesseqgtr \gtreqless \lesseqqgtr \gtreqqless \lesssim \gtrsim \lnsim \gnsim \lessapprox \gtrapprox \lnapprox \gnapprox \vartriangleleft \vartriangleright \ntriangleleft \ntriangleright \trianglelefteq \trianglerighteq \ntrianglelefteq \ntrianglerighteq \blacktriangleleft \blacktriangleright \subset \supset \subseteq \supseteq \subsetneq \supsetneq \varsubsetneq \varsupsetneq \nsubseteq \nsupseteq \subseteqq \supseteqq \subsetneqq \supsetneqq \nsubseteqq \nsupseteqq \backepsilon \Subset \Supset \sqsubset \sqsupset \sqsubseteq \sqsupseteq ⋈⋈∝∝⊸⋔∴∵==≡≈∼≃⋍≊≅≆⌣⌢≍⌢⌣≬≺≻⊀⊁⪯⪰⋠⋡≼≽⋞⋟≾≿⋨⋩⪷⪸⪹⪺⊥⊢⊣⊬⊩⊪⊨⊨⊭⊯∣∤∥∦∣∥<>≮≯⋖⋗≪≫⋘⋙≤≥⪇⪈≰≱≦≧≨≩⩽⩾⪕⪖≶≷⋚⋛⪋⪌≲≳⋦⋧⪅⪆⪉⪊⊲⊳⋪⋫⊴⊵⋬⋭◀▶⊂⊃⊆⊇⊊⊋⊈⊉⫅⫆⫋⫌∍⋐⋑⊏⊐⊑⊒
$$
\leftarrow \leftrightarrow \rightarrow \mapsto \longleftarrow \longleftrightarrow \longrightarrow \longmapsto \downarrow \updownarrow \uparrow \nwarrow \searrow \nearrow \swarrow \nleftarrow \nleftrightarrow \nrightarrow \hookleftarrow \hookrightarrow \twoheadleftarrow \twoheadrightarrow \leftarrowtail \rightarrowtail \Leftarrow \Leftrightarrow \Rightarrow \Longleftarrow \Longleftrightarrow \Longrightarrow \Updownarrow \Uparrow \Downarrow \nLeftarrow \nLeftrightarrow \nRightarrow \leftleftarrows \leftrightarrows \rightleftarrows \rightrightarrows \downdownarrows \upuparrows \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \Lsh \Rsh \looparrowleft \looparrowright \dashleftarrow \dashrightarrow \leftrightsquigarrow \rightsquigarrow \Lleftarrow \leftharpoondown \rightharpoondown \leftharpoonup \rightharpoonup \rightleftharpoons \leftrightharpoons \downharpoonleft \upharpoonleft \downharpoonright \upharpoonright
$$
← ↔ → ↦ ⟵ ⟷ ⟶ ⟼ ↓ ↕ ↑ ↖ ↘ ↗ ↙ ↚ ↮ ↛ ↩ ↪ ↞ ↠ ↢ ↣ ⇐ ⇔ ⇒ ⟸ ⟺ ⟹ ⇕ ⇑ ⇓ ⇍ ⇎ ⇏ ⇇ ⇆ ⇄ ⇉ ⇊ ⇈ ↺ ↻ ↶ ↷ ↰ ↱ ↫ ↬ ⇠ ⇢ ↭ ⇝ ⇚ ↽ ⇁ ↼ ⇀ ⇌ ⇋ ⇃ ↿ ⇂ ↾ \leftarrow \leftrightarrow \rightarrow \mapsto \longleftarrow \longleftrightarrow \longrightarrow \longmapsto \downarrow \updownarrow \uparrow \nwarrow \searrow \nearrow \swarrow \nleftarrow \nleftrightarrow \nrightarrow \hookleftarrow \hookrightarrow \twoheadleftarrow \twoheadrightarrow \leftarrowtail \rightarrowtail \Leftarrow \Leftrightarrow \Rightarrow \Longleftarrow \Longleftrightarrow \Longrightarrow \Updownarrow \Uparrow \Downarrow \nLeftarrow \nLeftrightarrow \nRightarrow \leftleftarrows \leftrightarrows \rightleftarrows \rightrightarrows \downdownarrows \upuparrows \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \Lsh \Rsh \looparrowleft \looparrowright \dashleftarrow \dashrightarrow \leftrightsquigarrow \rightsquigarrow \Lleftarrow \leftharpoondown \rightharpoondown \leftharpoonup \rightharpoonup \rightleftharpoons \leftrightharpoons \downharpoonleft \upharpoonleft \downharpoonright \upharpoonright ←↔→↦⟵⟷⟶⟼↓↕↑↖↘↗↙↚↮↛↩↪↞↠↢↣⇐⇔⇒⟸⟺⟹⇕⇑⇓⇍⇎⇏⇇⇆⇄⇉⇊⇈↺↻↶↷↰↱↫↬⇠⇢↭⇝⇚↽⇁↼⇀⇌⇋⇃↿⇂↾
行间公式:$$\frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2}$$
:
d
d
x
e
a
x
=
a
e
a
x
∑
i
=
1
n
(
X
i
−
X
‾
)
2
\frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2}
dxdeax=aeaxi=1∑n(Xi−X)2
省略号:
$$\cdots 和 \ldots$$
:
⋯
和
…
\cdots 和 \ldots
⋯和…$$ {1+2+3+\ldots+n} $$
:
1
+
2
+
3
+
…
+
n
{1+2+3+\ldots+n}
1+2+3+…+n行内公式: $R^s_r(t_r,t_e)=(t_r-t_e)c$
:
R
r
s
(
t
r
,
t
e
)
=
(
t
r
−
t
e
)
c
R^s_r(t_r,t_e)=(t_r-t_e)c
Rrs(tr,te)=(tr−te)c
显示公式: $$R^s_r(t_r,t_e)=(t_r-t_e)c$$
:
R
r
s
(
t
r
,
t
e
)
=
(
t
r
−
t
e
)
c
R^s_r(t_r,t_e)=(t_r-t_e)c
Rrs(tr,te)=(tr−te)c
$$\frac{\partial f(x,y)}{\partial x}$$
:
∂
f
(
x
,
y
)
∂
x
\frac{\partial f(x,y)}{\partial x}
∂x∂f(x,y)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。