当前位置:   article > 正文

markdown中数学符号公式和字母表示_markdown 约等于

markdown 约等于

一. 常用数学符号markdown表示

  • 乘号,正负号,:$\times$ $\pm$: × \times × ± \pm ±
  • 除号, 竖线:$\div$ $\mid$: ÷ \div ÷ ∣ \mid
  • 点:$\cdot$: ⋅ \cdot
  • $\circ$: ∘ \circ
  • 克罗内克积$\bigotimes$: ⨂ \bigotimes
  • 异或$\bigoplus$: ⨁ \bigoplus
  • 小于等于,大于等于 不等于$\leq$ $\geq$ $\neq$: ≤ \leq ≥ \geq ≠ \neq =
  • 约等于$\approx$: ≈ \approx
  • 积分,双重积分,曲线积分$\int$ $\iint$ $\oint$: ∫ \int ∬ \iint ∮ \oint
  • 无穷$\infty$: ∞ \infty
  • 梯度$\nabla$: ∇ \nabla
  • 因为,所以$\because$ 和 $\therefore$ ∵ \because ∴ \therefore
  • 任意和存在$\forall$ 和 $\exists$: ∀ \forall ∃ \exists
  • 属于和不属于$\in$ 和 $\notin$: ∈ \in ∉ \notin /
  • 子集,真子集,空集$\subset$,$\subseteq$,$\emptyset$: ⊂ \subset ⊆ \subseteq ∅ \emptyset
  • 交集和并集$\bigcap$ 和 $\bigcup$: ⋂ \bigcap ⋃ \bigcup
  • 逻辑或 和 逻辑与$\bigvee$ 和 $\bigwedge$: ⋁ \bigvee ⋀ \bigwedge
  • 期望值$\hat{y}$: y ^ \hat{y} y^
  • 平均值$\overline{a+b+c+d}$: a + b + c + d ‾ \overline{a+b+c+d} a+b+c+d

二. 数学符号markdown表示的案例

三角函数:$$\sin$$: sin ⁡ \sin sin

分数:

  • $\dfrac{2}{3}$,$\tfrac{2}{3}$: 2 3 \dfrac{2}{3} 32 2 3 \tfrac{2}{3} 32
  • $$\frac{7x+5}{2+y^2}$$ 效果为: 7 x + 5 2 + y 2 \frac{7x+5}{2+y^2} 2+y27x+5
  • $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$: x = − b ± b 2 − 4 a c 2 a x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b24ac

对数函数: $$\ln15, \log_2 10 , \lg7$$: ln ⁡ 15 , log ⁡ 2 10 , lg ⁡ 7 \ln15, \log_2 10 , \lg7 ln15,log210,lg7

关系运算符: $$\pm \times \div \sum \prod \neq \leq \geq$$: ± × ÷ ∑ ∏ ≠ ≤ ≥ \pm \times \div \sum \prod \neq \leq \geq ±×÷=


上标:

  • $A^2$、$A^{上标}$ : A 2 A^2 A2 A 上 标 A^{上标} A
  • $$A^2 \; A^{上标} \; \mathop{A}\limits^2$$ A 2    A 上 标    A 2 A^2 \; A^{上标} \; \mathop{A}\limits^2 A2AA2

下标:

  • $A_2$、$A_{下标}$ A 2 A_2 A2 A 下 标 A_{下标} A
  • $$A_2 \; A_{下标}\; \mathop{A}\limits_2$$: A 2    A 下 标    A 2 A_2 \; A_{下标}\; \mathop{A}\limits_2 A2A2A
  • $$z=z_l$$: z = z l z=z_l z=zl

开根号:

  • $\sqrt[开方数]{参数}$ : 参 数 开 方 数 \sqrt[开方数]{参数}
  • $$\sqrt[开方数]{参数}$$: 参 数 开 方 数 \sqrt[开方数]{参数}
  • $$\sqrt{2};\sqrt[n]{3}$$: 2 ; 3 n \sqrt{2};\sqrt[n]{3} 2 ;n3
  • $$ \sqrt x * \sqrt[3] x * \sqrt[-1] x $$: x ∗ x 3 ∗ x − 1 \sqrt x * \sqrt[3] x * \sqrt[-1] x x 3x 1x

求和:

  • $\sum$: ∑ \sum
  • 求和上下标:$\sum_{i=0}^n$: ∑ i = 0 n \sum_{i=0}^n i=0n
  • $$\sum ^2_3\;\sum \nolimits^2_3$$ : ∑ 3 2    ∑ 3 2 \sum ^2_3\;\sum \nolimits^2_3 3232

积分:

  • $\int$: ∫ \int
  • $$\int ^2_3\;\int \limits^2_3$$: ∫ 3 2    ∫ 3 2 \int ^2_3\;\int \limits^2_3 3232
  • $$\int ^2_3 x^2 {\rm d}x$$: ∫ 3 2 x 2 d x \int ^2_3 x^2 {\rm d}x 32x2dx
  • $$\iint$$: ∬ \iint

极限:

  • $$\lim_{n\rightarrow+\infty} n$$: lim ⁡ n → + ∞ n \lim_{n\rightarrow+\infty} n n+limn
  • $$\begin{aligned} \lim_{a\to \infty} \tfrac{1}{a} \end{aligned}$$: lim ⁡ a → ∞ 1 a lima1a
    alima1

累加:$$\sum \frac{1}{i^2}$$: ∑ 1 i 2 \sum \frac{1}{i^2} i21
累乘:

  • $$\prod \frac{1}{i^2}$$: ∏ 1 i 2 \prod \frac{1}{i^2} i21
  • $$ \prod_{{ \begin{gathered} 1\le i \le n\\ 1\le j \le m \end{gathered} }} M_{i,j} $$:
    ∏ 1 ≤ i ≤ n 1 ≤ j ≤ m M i , j \prod_{{ 1in1jm
    }} M_{i,j}
    1in1jmMi,j

矢量:$$\vec{a} \cdot \vec{b}=0$$: $$ a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b}=0 a b =0

三. 希腊字符

$$\alpha \beta \gamma \delta \epsilon $$: α β γ δ ϵ \alpha \beta \gamma \delta \epsilon αβγδϵ
$$ \zeta \eta \theta \vartheta \iota $$: ζ η θ ϑ ι \zeta \eta \theta \vartheta \iota ζηθϑι
$$ \kappa \lambda \mu \nu \xi $$: κ λ μ ν ξ \kappa \lambda \mu \nu \xi κλμνξ
$$o \pi \varpi \rho \varrho $$: o π ϖ ρ ϱ o \pi \varpi \rho \varrho oπϖρϱ
$$ \sigma \varsigma \tau \upsilon \phi $$: σ ς τ υ ϕ \sigma \varsigma \tau \upsilon \phi σςτυϕ
$$ \varphi \chi \psi \omega A $$: φ χ ψ ω A \varphi \chi \psi \omega A φχψωA
$$ B \Gamma \varGamma \Delta \varDelta $$: B Γ Γ Δ Δ B \Gamma \varGamma \Delta \varDelta BΓΓΔΔ
$$ E Z H \Theta \varTheta $$: E Z H Θ Θ E Z H \Theta \varTheta EZHΘΘ
$$ I K \Lambda \varLambda M $$: I K Λ Λ M I K \Lambda \varLambda M IKΛΛM
$$ N \Xi \varXi O \Pi $$: N Ξ Ξ O Π N \Xi \varXi O \Pi NΞΞOΠ
$$ \varPi P \Sigma \Upsilon \varUpsilon $$: Π P Σ Υ Υ \varPi P \Sigma \Upsilon \varUpsilon ΠPΣΥΥ
$$ \Phi \varPhi X \varPsi \Omega \varOmega$$: Φ Φ X Ψ Ω Ω \Phi \varPhi X \varPsi \Omega \varOmega ΦΦXΨΩΩ

四. 一些公式

矩阵:
$$ \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right]\tag{2}$$
[ 1 2 3 4 5 6 7 8 9 ] (2) \left[ 123456789

\right]\tag{2} 147258369(2)

分段函数

$$
f(x) = \left\{
  \begin{array}{lr}
    x^2 & : x < 0\\
    x^3 & : x \ge 0
  \end{array}
\right.
$$

$$
u(x) = 
  \begin{cases} 
   \exp{x} & \text{if } x \geq 0 \\
   1       & \text{if } x < 0
  \end{cases}
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

f ( x ) = { x 2 : x < 0 x 3 : x ≥ 0 f(x) = \left\{ x2:x<0x3:x0

\right. f(x)={x2x3:x<0:x0

u ( x ) = { exp ⁡ x if  x ≥ 0 1 if  x < 0 u(x) = {expxif x01if x<0

u(x)={expx1if x0if x<0
方程组:

$$
\left\{ 
\begin{array}{c}
    a_1x+b_1y+c_1z=d_1 \\ 
    a_2x+b_2y+c_2z=d_2 \\ 
    a_3x+b_3y+c_3z=d_3
\end{array}
\right. 
$$
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left\{ a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

\right. a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

线性模型

$$
h(\theta) = \sum_{j = 0} ^n \theta_j x_j
$$
  • 1
  • 2
  • 3

h ( θ ) = ∑ j = 0 n θ j x j h(\theta) = \sum_{j = 0} ^n \theta_j x_j h(θ)=j=0nθjxj

均方误差:

$$
J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2
$$
  • 1
  • 2
  • 3

J ( θ ) = 1 2 m ∑ i = 0 m ( y i − h θ ( x i ) ) 2 J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2 J(θ)=2m1i=0m(yihθ(xi))2

批量梯度下降:

$$
\frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j 
$$
  • 1
  • 2
  • 3

∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) x j i \frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j θjJ(θ)=m1i=0m(yihθ(xi))xji

五. 关系符号和箭头符号

3.1 关系符号

$$
\bowtie    \Join    \propto    \varpropto    \multimap    \pitchfork  \therefore    \because    =    \neq    \equiv    \approx    \sim    \simeq    \backsimeq    \approxeq    \cong    \ncong        \smile    \frown    \asymp    \smallfrown    \smallsmile    \between    \prec    \succ    \nprec    \nsucc    \preceq    \succeq    \npreceq    \nsucceq    \preccurlyeq    \succcurlyeq    \curlyeqprec    \curlyeqsucc    \precsim    \succsim    \precnsim    \succnsim    \precapprox    \succapprox    \precnapprox    \succnapprox    \perp    \vdash    \dashv    \nvdash    \Vdash    \Vvdash    \models    \vDash    \nvDash    \nVDash    \mid    \nmid    \parallel    \nparallel    \shortmid    \nshortmid    \shortparallel    \nshortparallel    <    >    \nless    \ngtr    \lessdot    \gtrdot    \ll    \gg    \lll    \ggg    \leq    \geq    \lneq    \gneq    \nleq    \ngeq    \leqq    \geqq    \lneqq    \gneqq    \lvertneqq    \gvertneqq    \nleqq    \ngeqq    \leqslant    \geqslant    \nleqslant    \ngeqslant    \eqslantless    \eqslantgtr    \lessgtr    \gtrless    \lesseqgtr    \gtreqless    \lesseqqgtr    \gtreqqless    \lesssim    \gtrsim    \lnsim    \gnsim    \lessapprox    \gtrapprox    \lnapprox    \gnapprox    \vartriangleleft    \vartriangleright    \ntriangleleft    \ntriangleright    \trianglelefteq    \trianglerighteq    \ntrianglelefteq    \ntrianglerighteq    \blacktriangleleft    \blacktriangleright    \subset    \supset    \subseteq    \supseteq    \subsetneq    \supsetneq    \varsubsetneq    \varsupsetneq    \nsubseteq    \nsupseteq    \subseteqq    \supseteqq    \subsetneqq    \supsetneqq    \nsubseteqq    \nsupseteqq    \backepsilon    \Subset    \Supset    \sqsubset    \sqsupset    \sqsubseteq    \sqsupseteq
$$
  • 1
  • 2
  • 3

⋈ ⋈ ∝ ∝ ⊸ ⋔ ∴ ∵ = ≠ ≡ ≈ ∼ ≃ ⋍ ≊ ≅ ≆ ⌣ ⌢ ≍ ⌢ ⌣ ≬ ≺ ≻ ⊀ ⊁ ⪯ ⪰ ⋠ ⋡ ≼ ≽ ⋞ ⋟ ≾ ≿ ⋨ ⋩ ⪷ ⪸ ⪹ ⪺ ⊥ ⊢ ⊣ ⊬ ⊩ ⊪ ⊨ ⊨ ⊭ ⊯ ∣ ∤ ∥ ∦ ∣ ∤ ∥ ∦ < > ≮ ≯ ⋖ ⋗ ≪ ≫ ⋘ ⋙ ≤ ≥ ⪇ ⪈ ≰ ≱ ≦ ≧ ≨ ≩ ≨ ≩ ≰ ≱ ⩽ ⩾ ≰ ≱ ⪕ ⪖ ≶ ≷ ⋚ ⋛ ⪋ ⪌ ≲ ≳ ⋦ ⋧ ⪅ ⪆ ⪉ ⪊ ⊲ ⊳ ⋪ ⋫ ⊴ ⊵ ⋬ ⋭ ◀ ▶ ⊂ ⊃ ⊆ ⊇ ⊊ ⊋ ⊊ ⊋ ⊈ ⊉ ⫅ ⫆ ⫋ ⫌ ⊈ ⊉ ∍ ⋐ ⋑ ⊏ ⊐ ⊑ ⊒ \bowtie \Join \propto \varpropto \multimap \pitchfork \therefore \because = \neq \equiv \approx \sim \simeq \backsimeq \approxeq \cong \ncong \smile \frown \asymp \smallfrown \smallsmile \between \prec \succ \nprec \nsucc \preceq \succeq \npreceq \nsucceq \preccurlyeq \succcurlyeq \curlyeqprec \curlyeqsucc \precsim \succsim \precnsim \succnsim \precapprox \succapprox \precnapprox \succnapprox \perp \vdash \dashv \nvdash \Vdash \Vvdash \models \vDash \nvDash \nVDash \mid \nmid \parallel \nparallel \shortmid \nshortmid \shortparallel \nshortparallel < > \nless \ngtr \lessdot \gtrdot \ll \gg \lll \ggg \leq \geq \lneq \gneq \nleq \ngeq \leqq \geqq \lneqq \gneqq \lvertneqq \gvertneqq \nleqq \ngeqq \leqslant \geqslant \nleqslant \ngeqslant \eqslantless \eqslantgtr \lessgtr \gtrless \lesseqgtr \gtreqless \lesseqqgtr \gtreqqless \lesssim \gtrsim \lnsim \gnsim \lessapprox \gtrapprox \lnapprox \gnapprox \vartriangleleft \vartriangleright \ntriangleleft \ntriangleright \trianglelefteq \trianglerighteq \ntrianglelefteq \ntrianglerighteq \blacktriangleleft \blacktriangleright \subset \supset \subseteq \supseteq \subsetneq \supsetneq \varsubsetneq \varsupsetneq \nsubseteq \nsupseteq \subseteqq \supseteqq \subsetneqq \supsetneqq \nsubseteqq \nsupseteqq \backepsilon \Subset \Supset \sqsubset \sqsupset \sqsubseteq \sqsupseteq ==<>

3.2 箭头符号

$$
\leftarrow    \leftrightarrow    \rightarrow    \mapsto    \longleftarrow        \longleftrightarrow    \longrightarrow    \longmapsto    \downarrow    \updownarrow    \uparrow    \nwarrow        \searrow    \nearrow    \swarrow        \nleftarrow            \nleftrightarrow        \nrightarrow        \hookleftarrow        \hookrightarrow        \twoheadleftarrow        \twoheadrightarrow        \leftarrowtail        \rightarrowtail        \Leftarrow        \Leftrightarrow        \Rightarrow        \Longleftarrow        \Longleftrightarrow        \Longrightarrow            \Updownarrow        \Uparrow        \Downarrow        \nLeftarrow        \nLeftrightarrow    \nRightarrow        \leftleftarrows        \leftrightarrows        \rightleftarrows        \rightrightarrows        \downdownarrows        \upuparrows        \circlearrowleft        \circlearrowright        \curvearrowleft        \curvearrowright        \Lsh        \Rsh        \looparrowleft        \looparrowright        \dashleftarrow        \dashrightarrow        \leftrightsquigarrow        \rightsquigarrow        \Lleftarrow        \leftharpoondown        \rightharpoondown        \leftharpoonup        \rightharpoonup        \rightleftharpoons        \leftrightharpoons        \downharpoonleft        \upharpoonleft        \downharpoonright            \upharpoonright
$$
  • 1
  • 2
  • 3

← ↔ → ↦ ⟵ ⟷ ⟶ ⟼ ↓ ↕ ↑ ↖ ↘ ↗ ↙ ↚ ↮ ↛ ↩ ↪ ↞ ↠ ↢ ↣ ⇐ ⇔ ⇒ ⟸ ⟺ ⟹ ⇕ ⇑ ⇓ ⇍ ⇎ ⇏ ⇇ ⇆ ⇄ ⇉ ⇊ ⇈ ↺ ↻ ↶ ↷ ↰ ↱ ↫ ↬ ⇠ ⇢ ↭ ⇝ ⇚ ↽ ⇁ ↼ ⇀ ⇌ ⇋ ⇃ ↿ ⇂ ↾ \leftarrow \leftrightarrow \rightarrow \mapsto \longleftarrow \longleftrightarrow \longrightarrow \longmapsto \downarrow \updownarrow \uparrow \nwarrow \searrow \nearrow \swarrow \nleftarrow \nleftrightarrow \nrightarrow \hookleftarrow \hookrightarrow \twoheadleftarrow \twoheadrightarrow \leftarrowtail \rightarrowtail \Leftarrow \Leftrightarrow \Rightarrow \Longleftarrow \Longleftrightarrow \Longrightarrow \Updownarrow \Uparrow \Downarrow \nLeftarrow \nLeftrightarrow \nRightarrow \leftleftarrows \leftrightarrows \rightleftarrows \rightrightarrows \downdownarrows \upuparrows \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \Lsh \Rsh \looparrowleft \looparrowright \dashleftarrow \dashrightarrow \leftrightsquigarrow \rightsquigarrow \Lleftarrow \leftharpoondown \rightharpoondown \leftharpoonup \rightharpoonup \rightleftharpoons \leftrightharpoons \downharpoonleft \upharpoonleft \downharpoonright \upharpoonright

六. 其它

行间公式:$$\frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2}$$: d d x e a x = a e a x ∑ i = 1 n ( X i − X ‾ ) 2 \frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2} dxdeax=aeaxi=1n(XiX)2

省略号:

  • $$\cdots 和 \ldots$$: ⋯ 和 … \cdots 和 \ldots
  • $$ {1+2+3+\ldots+n} $$: 1 + 2 + 3 + … + n {1+2+3+\ldots+n} 1+2+3++n

行内公式: $R^s_r(t_r,t_e)=(t_r-t_e)c$: R r s ( t r , t e ) = ( t r − t e ) c R^s_r(t_r,t_e)=(t_r-t_e)c Rrs(tr,te)=(trte)c

显示公式: $$R^s_r(t_r,t_e)=(t_r-t_e)c$$: R r s ( t r , t e ) = ( t r − t e ) c R^s_r(t_r,t_e)=(t_r-t_e)c Rrs(tr,te)=(trte)c

$$\frac{\partial f(x,y)}{\partial x}$$: ∂ f ( x , y ) ∂ x \frac{\partial f(x,y)}{\partial x} xf(x,y)

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/297463
推荐阅读
相关标签
  

闽ICP备14008679号