当前位置:   article > 正文

class torch.optim.lr_scheduler.ReduceLROnPlateau

optim.lr_scheduler.reducelronplateau

参考链接: class torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=‘min’, factor=0.1, patience=10, threshold=0.0001, threshold_mode=‘rel’, cooldown=0, min_lr=0, eps=1e-08, verbose=False)
配套代码下载链接: 测试学习率调度器.zip

实验代码展示:

# torch.optim.lr_scheduler.ReduceLROnPlateau

import matplotlib.pyplot as plt
import numpy as np 
import torch
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torch.autograd import Function
import random
import os
seed = 20200910
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)  # if you are using multi-GPU.
np.random.seed(seed)  # Numpy module.
random.seed(seed)  # Python random module.
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

class Dataset4cxq(Dataset):
    def __init__(self, length):
        self.length = length

    def __len__(self):
        return self.length
        
    def __getitem__(self, index):
        if type(index) != type(2) and type(index) != (slice):
           raise  TypeError('索引类型错误,程序退出...')
        
        # index 是单个数
        if type(index) == type(2):
            if index >= self.length or index < -1 * self.length:
                # print("索引越界,程序退出...")
                raise IndexError("索引越界,程序退出...")
            elif index < 0:
                index = index + self.length 
            
            Celsius = torch.randn(1,1,dtype=torch.float).item()
            Fahrenheit = 32.0 + 1.8 * Celsius
            return Celsius, Fahrenheit 
    
        
def collate_fn4cxq(batch):
    list_c = []
    list_f = []
    for c, f in batch:
        list_c.append(c)
        list_f.append(f)
    list_c = torch.tensor(list_c)
    list_f = torch.tensor(list_f)
    return list_c, list_f

my_dataset_val = Dataset4cxq(16)
dataloader4cxq_val = torch.utils.data.DataLoader(
    dataset=my_dataset_val, 
    batch_size=8,
    # batch_size=2,
    drop_last=True,
    # drop_last=False,
    shuffle=True,  #  True   False
    # shuffle=False,  #  True   False
    collate_fn=collate_fn4cxq,
    # collate_fn=None,
)

def validate():
    total_loss_val = 0.0
    for cnt, data in enumerate(dataloader4cxq_val, 0):
        Celsius, Fahrenheit = data
        Celsius, Fahrenheit = Celsius.cuda().view(-1,1), Fahrenheit.cuda().view(-1,1)
        output = model(Celsius)
        loss = cost_function(output, Fahrenheit)
        total_loss_val += loss.item()
    return total_loss_val


if __name__ == "__main__":
    my_dataset = Dataset4cxq(32)
    # for c,f in my_dataset:
    #     print(type(c),type(f))
    dataloader4cxq = torch.utils.data.DataLoader(
        dataset=my_dataset, 
        batch_size=8,
        # batch_size=2,
        drop_last=True,
        # drop_last=False,
        shuffle=True,  #  True   False
        # shuffle=False,  #  True   False
        collate_fn=collate_fn4cxq,
        # collate_fn=None,
    )

    # for cnt, data in enumerate(dataloader4cxq, 0):
    #     # pass
    #     sample4cxq, label4cxq = data
    #     print('sample4cxq的类型: ',type(sample4cxq),'\tlabel4cxq的类型: ',type(label4cxq))
    #     print('迭代次数:', cnt, '  sample4cxq:', sample4cxq, '  label4cxq:', label4cxq)

    
    
    
    
    print('开始创建模型'.center(80,'-'))
    model = torch.nn.Linear(in_features=1, out_features=1, bias=True)  # True # False
    model.cuda()
    # optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.01185)
    # optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
    # 模拟华氏度与摄氏度之间的转换  
    # Fahrenheit = 32 + 1.8 * Celsius
    model.train()
    cost_function = torch.nn.MSELoss()
    epochs = 100001  # 100001
    epochs = 10001  # 100001
    print('\n')
    print('开始训练模型'.center(80,'-'))
    list4delta = list()
    list4epoch = list()
    
    # scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=(lambda epoch: 0.99 ** (epoch//1000)))
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
    
    for epoch in range(epochs):
        # with torch.no_grad():
        #     Celsius = torch.randn(10,1,dtype=torch.float).cuda()
        #     Fahrenheit = 32.0 + 1.8 * Celsius
        #     Fahrenheit = Fahrenheit.cuda()

        # Celsius = torch.randn(1,1,dtype=torch.float,requires_grad=False).cuda()  # requires_grad=False  True
        # Fahrenheit = 32.0 + 1.8 * Celsius
        # Fahrenheit = Fahrenheit.cuda()        # requires_grad=False
        total_loss = 0.0
        for cnt, data in enumerate(dataloader4cxq, 0):
            Celsius, Fahrenheit = data
            Celsius, Fahrenheit = Celsius.cuda().view(-1,1), Fahrenheit.cuda().view(-1,1)
            output = model(Celsius)
            loss = cost_function(output, Fahrenheit)
            total_loss += loss.item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        # scheduler.step()
        val_loss = validate()
        scheduler.step(val_loss)
            
        if epoch % 100 == 0:  # if epoch % 1000 == 0:
            list4delta.append(total_loss)
            list4epoch.append(epoch)
            
        if epoch % 500 == 0:
            info = '\nepoch:{0:>6}/{1:<6}\t'.format(epoch,epochs)
            for k, v in model.state_dict().items():
                info += str(k)+ ':' + '{0:<.18f}'.format(v.item()) + '\t'
                # info += str(k)+ ':' + str(v.item()) + '\t'
            print(info)

    fig, ax = plt.subplots() 
    # ax.plot(10*np.random.randn(100),10*np.random.randn(100),'o')
    ax.plot(list4epoch, list4delta, 'r.-', markersize=8)
    ax.set_title("Visualization For My Model's Errors")
    plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165

控制台下结果输出:

Windows PowerShell
版权所有 (C) Microsoft Corporation。保留所有权利。

尝试新的跨平台 PowerShell https://aka.ms/pscore6

加载个人及系统配置文件用了 793 毫秒。
(base) PS C:\Users\chenxuqi\Desktop\News4cxq\测试学习率调度器> conda activate pytorch_1.7.1_cu102
(pytorch_1.7.1_cu102) PS C:\Users\chenxuqi\Desktop\News4cxq\测试学习率调度器>  & 'D:\Anaconda3\envs\pytorch_1.7.1_cu102\python.exe' 'c:\Users\chenxuqi\.vscode\extensions\ms-python.python-2021.1.502429796\pythonFiles\lib\python\debugpy\launcher' '52505' '--' 'c:\Users\chenxuqi\Desktop\News4cxq\测试学习率调度器\test12.py'       
-------------------------------------开始创建模型-------------------------------------


-------------------------------------开始训练模型-------------------------------------

epoch:     0/10001      weight:0.951807916164398193     bias:1.023432016372680664       

epoch:   500/10001      weight:2.043667316436767578     bias:20.459421157836914062      

epoch:  1000/10001      weight:1.768472671508789062     bias:30.477319717407226562      

epoch:  1500/10001      weight:1.799477815628051758     bias:31.993103027343750000      

epoch:  2000/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  2500/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  3000/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  3500/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  4000/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  4500/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  5000/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  5500/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  6000/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  6500/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  7000/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  7500/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  8000/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  8500/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  9000/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch:  9500/10001      weight:1.800006389617919922     bias:31.999856948852539062

epoch: 10000/10001      weight:1.800006389617919922     bias:31.999856948852539062

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

在这里插入图片描述

在这里插入图片描述

``

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/328461
推荐阅读
相关标签
  

闽ICP备14008679号