赞
踩
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”
卷积神经网络主要包括卷积层,采样层(一般做最大池化)和全连接层(FC层)。
其参数如下:
其参数如下:
一共定义了五层,其中两层卷积层,两层池化层,最后一层为FC层进行分类输出。其网络结构如下:
具体的图片大小计算如下图:
- import torch
- from torchvision import transforms # 是一个常用的图片变换类
- from torchvision import datasets
- from torch.utils.data import DataLoader
- import torch.nn.functional as F
-
- batch_size = 64
- transform = transforms.Compose(
- [
- transforms.ToTensor(), # 把数据转换成张量
- transforms.Normalize((0.1307,), (0.3081,)) # 0.1307是均值,0.3081是标准差
- ]
- )
- train_dataset = datasets.MNIST(root='../dataset/mnist',
- train=True,
- download=True,
- transform=transform)
- train_loader = DataLoader(train_dataset,
- shuffle=True,
- batch_size=batch_size)
- test_dataset = datasets.MNIST(root='../dataset/mnist',
- train=False,
- download=True,
- transform=transform)
- test_loader = DataLoader(test_dataset,
- shuffle=True,
- batch_size=batch_size)
-
-
- class CNN(torch.nn.Module):
- def __init__(self):
- super(CNN, self).__init__()
- self.layer1 = torch.nn.Sequential(
- torch.nn.Conv2d(1, 25, kernel_size=3),
- torch.nn.BatchNorm2d(25),
- torch.nn.ReLU(inplace=True)
- )
-
- self.layer2 = torch.nn.Sequential(
- torch.nn.MaxPool2d(kernel_size=2, stride=2)
- )
-
- self.layer3 = torch.nn.Sequential(
- torch.nn.Conv2d(25, 50, kernel_size=3),
- torch.nn.BatchNorm2d(50),
- torch.nn.ReLU(inplace=True)
- )
-
- self.layer4 = torch.nn.Sequential(
- torch.nn.MaxPool2d(kernel_size=2, stride=2)
- )
-
- self.fc = torch.nn.Sequential(
- torch.nn.Linear(50 * 5 * 5, 1024),
- torch.nn.ReLU(inplace=True),
- torch.nn.Linear(1024, 128),
- torch.nn.ReLU(inplace=True),
- torch.nn.Linear(128, 10)
- )
-
- def forward(self, x):
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
- x = x.view(x.size(0), -1) # 在进入全连接层之前需要把数据拉直Flatten
- x = self.fc(x)
- return x
-
-
- model = CNN()
- # 下面两行代码主要是如果有GPU那么就使用GPU跑代码,否则就使用cpu。cuda:0表示第1块显卡
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 将数据放在GPU上跑所需要的代码
- model.to(device) # 将数据放在GPU上跑所需要的代码
- criterion = torch.nn.CrossEntropyLoss() # 使用交叉熵损失
- optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.5) # momentum表示冲量,冲出局部最小
-
-
- def train(epochs):
- running_loss = 0.0
- for batch_idx, data in enumerate(train_loader, 0):
- inputs, target = data
- inputs, target = inputs.to(device), target.to(device) # 将数据放在GPU上跑所需要的代码
- optimizer.zero_grad()
- # 前馈+反馈+更新
- outputs = model(inputs)
- loss = criterion(outputs, target)
- loss.backward()
- optimizer.step()
-
- running_loss += loss.item()
- if batch_idx % 300 == 299: # 不让他每一次小的迭代就输出,而是300次小迭代再输出一次
- print('[%d,%5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
- running_loss = 0.0
- torch.save(model, 'model_{}.pth'.format(epochs))
-
-
- def test():
- correct = 0
- total = 0
- with torch.no_grad(): # 下面的代码就不会再计算梯度
- for data in test_loader:
- inputs, target = data
- inputs, target = inputs.to(device), target.to(device) # 将数据放在GPU上跑所需要的代码
- outputs = model(inputs)
- _, predicted = torch.max(outputs.data, dim=1) # _为每一行的最大值,predicted表示每一行最大值的下标
- total += target.size(0)
- correct += (predicted == target).sum().item()
- print('Accuracy on test set:%d %%' % (100 * correct / total))
-
-
- if __name__ == '__main__':
- for epoch in range(10):
- train(epoch)
- test()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。