赞
踩
推荐使用docker,Ubuntu20.04
https://www.modelscope.cn/docs/%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85
docker pull registry.cn-beijing.aliyuncs.com/modelscope-repo/modelscope:ubuntu22.04-cuda12.1.0-py310-torch2.1.2-tf2.14.0-1.12.0
在modelscope主页,找到模型
https://modelscope.cn/models/qwen/Qwen-14B-Chat/summary
可以使用如下脚本
import os
from modelscope import snapshot_download
# cache_dir 指定你的保存模型的路径
model_dir = snapshot_download('qwen/Qwen-14B-Chat',cache_dir="/workspace/models/AI-ModelScope")
使用LLaMA-Factory,
下载下面仓库的代码,
https://github.com/hiyouga/LLaMA-Factory
在代码目录,新建一个脚本 run_train_bash.sh
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch src/train_bash.py \ --deepspeed ds_config_zero3.json \ --stage sft \ --do_train True \ --model_name_or_path /workspace/models/AI-ModelScope/qwen/Qwen-14B-Chat/ \ --finetuning_type lora \ --template qwen \ --dataset_dir data \ --dataset lhs_merged_data \ --cutoff_len 1024 \ --learning_rate 5e-04 \ --num_train_epochs 3 \ --max_samples 100000 \ --per_device_train_batch_size 4 \ --gradient_accumulation_steps 4 \ --lr_scheduler_type cosine \ --max_grad_norm 1.0 \ --logging_steps 5 \ --save_steps 100 \ --warmup_steps 0 \ --neftune_noise_alpha 0 \ --lora_rank 8 \ --lora_dropout 0.1 \ --lora_target c_attn \ --output_dir output/qwen_14b_ds/train_2024_02_27 \ --bf16 True \ --plot_loss True
另外,还需要新建一个deepspeed的配置文件,这里使用qwen官方给的例子,新建一个ds_config_zero3.json
https://github.com/QwenLM/Qwen/blob/main/finetune/ds_config_zero3.json
{ "fp16": { "enabled": "auto", "loss_scale": 0, "loss_scale_window": 1000, "initial_scale_power": 16, "hysteresis": 2, "min_loss_scale": 1 }, "bf16": { "enabled": "auto" }, "optimizer": { "type": "AdamW", "params": { "lr": "auto", "betas": "auto", "eps": "auto", "weight_decay": "auto" } }, "scheduler": { "type": "WarmupLR", "params": { "warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto" } }, "zero_optimization": { "stage": 3, "offload_optimizer": { "device": "none", "pin_memory": true }, "offload_param": { "device": "none", "pin_memory": true }, "overlap_comm": true, "contiguous_gradients": true, "sub_group_size": 1e9, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "stage3_max_live_parameters": 1e9, "stage3_max_reuse_distance": 1e9, "stage3_gather_16bit_weights_on_model_save": true }, "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", "steps_per_print": 100, "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "wall_clock_breakdown": false }
具体的代码路径如下:
ds_config_zero3.json
直接在终端输入即可,缺什么包,再安装对应的包就可以了。
bash run_train_bash.sh
训练完成后,按照LLaMA-Factory readme中提到的合并权重命令进行合并即可,自行修改其中的路径参数
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#merge-lora-weights-and-export-model
python src/export_model.py \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \
--finetuning_type lora \
--export_dir path_to_export \
--export_size 2 \
--export_legacy_format False
最后,可以使用加载模型测试微调结果。
显存占用:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。