赞
踩
1.介绍
原始GAN(GAN 简介与代码实战_天竺街潜水的八角的博客-CSDN博客)在理论上可以完全逼近真实数据,但它的可控性不强(生成小图片还行,生成的大图片可能是不合逻辑的),因此需要对gan加一些约束,能生成我们想要的图片,这个时候,CGAN就横空出世了,更加详细的介绍参考论文:Conditional Generative Adversarial Nets
公式1是原始GAN的损失函数,公式2相对于公式1多了一个条件y,这个y可以是标签和图片中需要修复的部分(比如动物)等
如果只看公式2,很难想象到,怎样才能把y当作条件来融入网络。看下图之后,我们很容易想到,条件y和待判别的图像被拼接(concat)起来就可以达到这个效果。
使用额外信息y对模型增加条件,可以指导数据生成过程
- class CGAN():
- def __init__(self):
- # Input shape
- self.img_rows = 28
- self.img_cols = 28
- self.channels = 1
- self.img_shape = (self.img_rows, self.img_cols, self.channels)
- self.num_classes = 10
- self.latent_dim = 100
-
- optimizer = Adam(0.0002, 0.5)
-
- # Build and compile the discriminator
- self.discriminator = self.build_discriminator()
- self.discriminator.compile(loss=['binary_crossentropy'],
- optimizer=optimizer,
- metrics=['accuracy'])
-
- # Build the generator
- self.generator = self.build_generator()
-
- # The generator takes noise and the target label as input
- # and generates the corresponding digit of that label
- noise = Input(shape=(self.latent_dim,))
- label = Input(shape=(1,))
- img = self.generator([noise, label])
-
- # For the combined model we will only train the generator
- self.discriminator.trainable = False
-
- # The discriminator takes generated image as input and determines validity
- # and the label of that image
- valid = self.discriminator([img, label])
-
- # The combined model (stacked generator and discriminator)
- # Trains generator to fool discriminator
- self.combined = Model([noise, label], valid)
- self.combined.compile(loss=['binary_crossentropy'],
- optimizer=optimizer)
-
- def build_generator(self):
-
- model = Sequential()
-
- model.add(Dense(256, input_dim=self.latent_dim))
- model.add(LeakyReLU(alpha=0.2))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Dense(512))
- model.add(LeakyReLU(alpha=0.2))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Dense(1024))
- model.add(LeakyReLU(alpha=0.2))
- model.add(BatchNormalization(momentum=0.8))
- model.add(Dense(np.prod(self.img_shape), activation='tanh'))
- model.add(Reshape(self.img_shape))
-
- model.summary()
-
- noise = Input(shape=(self.latent_dim,))
- label = Input(shape=(1,), dtype='int32')
- label_embedding = Flatten()(Embedding(self.num_classes, self.latent_dim)(label))
-
- model_input = multiply([noise, label_embedding])
- img = model(model_input)
-
- return Model([noise, label], img)
-
- def build_discriminator(self):
-
- model = Sequential()
-
- model.add(Dense(512, input_dim=np.prod(self.img_shape)))
- model.add(LeakyReLU(alpha=0.2))
- model.add(Dense(512))
- model.add(LeakyReLU(alpha=0.2))
- model.add(Dropout(0.4))
- model.add(Dense(512))
- model.add(LeakyReLU(alpha=0.2))
- model.add(Dropout(0.4))
- model.add(Dense(1, activation='sigmoid'))
- model.summary()
-
- img = Input(shape=self.img_shape)
- label = Input(shape=(1,), dtype='int32')
-
- label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))
- flat_img = Flatten()(img)
-
- model_input = multiply([flat_img, label_embedding])
-
- validity = model(model_input)
-
- return Model([img, label], validity)
-
- def train(self, epochs, batch_size=128, sample_interval=50):
-
- # Load the dataset
- (X_train, y_train), (_, _) = mnist.load_data()
-
- # Configure input
- X_train = (X_train.astype(np.float32) - 127.5) / 127.5
- X_train = np.expand_dims(X_train, axis=3)
- y_train = y_train.reshape(-1, 1)
-
- # Adversarial ground truths
- valid = np.ones((batch_size, 1))
- fake = np.zeros((batch_size, 1))
-
- for epoch in range(epochs):
-
- # ---------------------
- # Train Discriminator
- # ---------------------
-
- # Select a random half batch of images
- idx = np.random.randint(0, X_train.shape[0], batch_size)
- imgs, labels = X_train[idx], y_train[idx]
-
- # Sample noise as generator input
- noise = np.random.normal(0, 1, (batch_size, 100))
-
- # Generate a half batch of new images
- gen_imgs = self.generator.predict([noise, labels])
-
- # Train the discriminator
- d_loss_real = self.discriminator.train_on_batch([imgs, labels], valid)
- d_loss_fake = self.discriminator.train_on_batch([gen_imgs, labels], fake)
- d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
-
- # ---------------------
- # Train Generator
- # ---------------------
-
- # Condition on labels
- sampled_labels = np.random.randint(0, 10, batch_size).reshape(-1, 1)
-
- # Train the generator
- g_loss = self.combined.train_on_batch([noise, sampled_labels], valid)
-
- # Plot the progress
- print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
-
- # If at save interval => save generated image samples
- if epoch % sample_interval == 0:
- self.sample_images(epoch)
-
- def sample_images(self, epoch):
- r, c = 2, 5
- noise = np.random.normal(0, 1, (r * c, 100))
- sampled_labels = np.arange(0, 10).reshape(-1, 1)
-
- gen_imgs = self.generator.predict([noise, sampled_labels])
-
- # Rescale images 0 - 1
- gen_imgs = 0.5 * gen_imgs + 0.5
-
- fig, axs = plt.subplots(r, c)
- cnt = 0
- for i in range(r):
- for j in range(c):
- axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
- axs[i,j].set_title("Digit: %d" % sampled_labels[cnt])
- axs[i,j].axis('off')
- cnt += 1
- fig.savefig("images/%d.png" % epoch)
- plt.close()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。