当前位置:   article > 正文

【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码

【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码

1. 卡尔曼滤波

卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。

以下是一个简单的卡尔曼滤波器实现:

```c
#include "kalman.h"

void Kalman_Init(Kalman_TypeDef *Kalman)
{
    Kalman->P[0][0] = 1;
    Kalman->P[1][1] = 1;
    Kalman->P[2][2] = 1;
    Kalman->Q[0][0] = 0.001;
    Kalman->Q[1][1] = 0.001;
    Kalman->Q[2][2] = 0.001;
    Kalman->R[0][0] = 0.5;
    Kalman->R[1][1] = 0.5;
    Kalman->R[2][2] = 0.5;
}

void Kalman_Update(Kalman_TypeDef *Kalman, float angle_m, float gyro_rate, float dt)
{
    // 预测
    float P00_temp = Kalman->P[0][0] + Kalman->Q[0][0] * dt;
    float P01_temp = Kalman->P[0][1] + Kalman->Q[0][1] * dt;
    float P10_temp = Kalman->P[1][0] + Kalman->Q[1][0] * dt;
    float P11_temp = Kalman->P[1][1] + Kalman->Q[1][1] * dt;
    float P20_temp = Kalman->P[2][0] + Kalman->Q[2][0] * dt;
    float P21_temp = Kalman->P[2][1] + Kalman->Q[2][1] * dt;
    float x_temp = Kalman->x[0] + dt * (angle_m + gyro_rate);
    float y_temp = Kalman->x[1] + dt * gyro_rate;

    // 更新
    float K0 = P00_temp / (P00_temp + Kalman->R[0][0]);
    float K1 = P11_temp / (P11_temp + Kalman->R[1][1]);
    float K2 = P21_temp / (P21_temp + Kalman->R[2][2]);

    Kalman->x[0] = x_temp + K0 * (angle_m - x_temp);
    Kalman->x[1] = y_temp + K1 * (gyro_rate - y_temp);

    Kalman->P[0][0] = P00_temp - K0 * P00_temp;
    Kalman->P[0][1] = P01_temp - K0 * P01_temp;
    Kalman->P[1][0] = P10_temp - K1 * P10_temp;
    Kalman->P[1][1] = P11_temp - K1 * P11_temp;
    Kalman->P[2][0] = P20_temp - K2 * P20_temp;
    Kalman->P[2][1] = P21_temp - K2 * P21_temp;
}
```

2. 四元数法

四元数法是一种处理三维旋转的方法,可以避免陀螺仪和加速度计的漂移问题。在姿态解算中,我们可以使用四元数法来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。

以下是一个简单的四元数法实现:

```c
#include "quaternion.h"

void Quaternion_Init(Quaternion_TypeDef *Quaternion)
{
    Quaternion->q[0] = 1;
    Quaternion->q[1] = 0;
    Quaternion->q[2] = 0;
    Quaternion->q[3] = 0;
}

void Quaternion_Update(Quaternion_TypeDef *Quaternion, float ax, float ay, float az, float gx, float gy, float gz, float dt)
{
    float norm;
    float vx, vy, vz;
    float q0, q1, q2, q3;
    float hx, hy, bx, bz;
    float halfvx, halfvy, halfvz;
    float halfq0, halfq1, halfq2, halfq3;
    float qa, qb, qc;

    // 计算加速度向量的模长
    norm = sqrt(ax * ax + ay * ay + az * az);

    // 归一化加速度向量
    ax /= norm;
    ay /= norm;
    az /= norm;

    // 计算重力向量在加速度向量上的投影
    vx = 2 * (0.5 - ay * 0.5 - az * 0.5);
    vy = 2 * (ax * 0.5 + az * 0.5);
    vz = 2 * (-ax * 0.5 + ay * 0.5);

    // 计算四元数的变化量
    halfvx = vx * 0.5 * dt;
    halfvy = vy * 0.5 * dt;
    halfvz = vz * 0.5 * dt;
    halfq0 = Quaternion->q[0];
    halfq1 = Quaternion->q[1];
    halfq2 = Quaternion->q[2];
    halfq3 = Quaternion->q[3];
    qa = halfq0;
    qb = halfq1;
    qc = halfq2;
    q0 = qa * (1 - halfvx) - qb * halfvy - qc * halfvz;
    q1 = qb * (1 - halfvx) + qa * halfvy - qc * halfvz;
    q2 = qc * (1 - halfvx) + qa * halfvy + qb * halfvz;
    q3 = -halfq3 * (1 - halfvx) - halfq2 * halfvy - halfq1 * halfvz;

    // 更新四元数
    Quaternion->q[0] = q0;
    Quaternion->q[1] = q1;
    Quaternion->q[2] = q2;
    Quaternion->q[3] = q3;
}
```

3. 互补滤波

互补滤波是一种结合了卡尔曼滤波和四元数法的方法,可以充分利用两者的优点。在姿态解算中,我们可以使用互补滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。

以下是一个简单的互补滤波实现:

```c
#include "complementary_filter.h"

void Complementary_Filter_Init(Complementary_Filter_TypeDef *Complementary_Filter)
{
    Complementary_Filter->alpha = 0.98;
}

void Complementary_Filter_Update(Complementary_Filter_TypeDef *Complementary_Filter, float angle_m, float gyro_rate, float dt)
{
    // 计算互补滤波的角度误差
    float error = angle_m - Complementary_Filter->angle;

    // 更新互补滤波的角度
    Complementary_Filter->angle += dt * (gyro_rate - error);
}
```

这些算法可以在STM32上运行,通过MPU6050获取陀螺仪和加速度计的数据,然后使用这些算法进行姿态解算。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/429163
推荐阅读
相关标签
  

闽ICP备14008679号