赞
踩
Elasticsearch是一个强大的搜索引擎,它提供了丰富的功能来满足复杂的搜索需求。其中,父子索引类型的join功能是一个强大的工具,它允许我们在同一索引中创建具有层级关系的文档。在这篇博客中,我们将深入探讨Elasticsearch中的父子索引类型join,包括其工作原理、如何使用以及需要注意的事项。
在Elasticsearch的实际应用中,嵌套文档是一个常见的需求,尤其是当我们需要对对象数组进行独立索引和查询时。在Elasticsearch中,这类嵌套结构被称为父子文档,它们能够“彼此独立地进行查询”。实现这一功能主要有两种方式:
Nested类型:
父子类型:
Nested类型和父子Join类型在处理关联数据时各有优势。Nested类型更适合处理静态的、紧密关联的嵌套数据,而父子Join类型则更适合处理需要动态更新或具有一对多关系的文档。
对象数组的默认存储方式:
Elasticsearch内部并不直接支持对象的层次结构,而是将对象层次结构扁平化为一个字段名和字段值的简单列表。这种处理方式可能导致数据关联性的丢失。例如,考虑以下文档:
PUT user/user_info/1
{
"group": "man",
"userName": [
{
"first": "张",
"last": "三"
},
{
"first": "李",
"last": "四"
}
]
}
如果我们尝试查询first
为“张”且last
为“四”的数据,按照常理,这样的数据应该不存在。然而,使用以下查询:
GET /user/user_info/_search { "query": { "bool": { "must": [ { "match": { "userName.first": "张" } }, { "match": { "userName.last": "四" } } ] } } }
意外地,我们可能会得到结果。这是因为Lucene(Elasticsearch的底层库)没有内部对象的概念,它将内部对象扁平化处理了。在内部,文档实际上被存储为:
{
"group": "man",
"userName.first": ["张", "李"],
"userName.last": ["三", "四"]
}
可以看到,userName.first
和userName.last
被扁平化为多值字段,它们之间的关联性已经丢失,因此查询结果可能不符合我们的预期。
在Elasticsearch中,父子索引类型join是通过特殊的字段类型来实现的,该字段类型被称为“join”。这个字段允许我们定义文档之间的父子关系。当我们创建一个包含join字段的索引时,我们需要指定哪些文档类型是父文档,哪些是子文档。
在底层,Elasticsearch使用特殊的路由机制来确保父子文档存储在同一个分片上。这是非常重要的,因为这样可以提高查询性能并确保数据的一致性。当我们索引一个子文档时,需要使用routing参数来指定其父文档的ID,以便Elasticsearch可以将它们路由到相同的分片。
数据层级关系的表示:在实际应用中,很多数据天然具有层级或关联关系。例如,一个博客系统可能包含博客文章和对应的评论,其中博客文章是父级数据,而评论是与文章相关联的子级数据。父子索引类型允许在Elasticsearch中明确地表示这种数据之间的层级关系。
关联查询的优化:当数据之间存在关联关系时,我们经常需要进行跨层级的查询。比如,我们可能想要找到所有包含特定评论的博客文章,或者查找某篇博客文章下的所有评论。通过使用父子索引类型,Elasticsearch可以高效地处理这类关联查询,因为它内部优化了父子文档之间的关联访问。
数据聚合和分析:在数据分析场景下,我们可能需要对具有层级关系的数据进行聚合操作。父子索引类型使得这类聚合更加直观和高效。例如,可以很容易地统计每篇博客文章有多少评论,或者分析不同类型的博客文章下评论的分布情况。
文档间的引用完整性:在某些情况下,确保文档间的引用完整性是很重要的。通过使用父子关系,可以更容易地管理和维护这种完整性。例如,当删除一个父文档时,可以方便地找到并处理所有相关的子文档。
简化数据模型:在某些情况下,使用父子关系可以简化数据模型的设计。通过将相关联的数据组织在同一个索引中,并明确它们的层级关系,可以减少数据冗余和提高数据的一致性。
虽然父子索引类型提供了解决上述问题的有效手段,但它也带来了一些额外的复杂性和性能考虑。因此,在使用之前需要仔细评估数据模型和查询需求,以确定是否适合使用父子索引类型。
join字段提供了一种在索引中明确定义父子文档之间关系的方法。使用join字段的优势在于:
创建一个新的索引,并定义好父子文档的映射关系。在映射中加入join字段,并设置好父子关系的名称。例如,我们可以定义一个订单索引,其中包含商品子文档。
PUT order-join { "settings": { "number_of_shards": 5, "number_of_replicas": 1 }, "mappings": { "properties": { "orderid": { "type": "integer" }, "buyer": { "type": "keyword" }, "order_time": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss" }, "goodsid": { "type": "integer" }, "goods_name": { "type": "keyword" }, "price": { "type": "double" }, "produce_time": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss" }, "my_join_field": { "type": "join", "relations": { "order": "goods" } } } } }
在添加文档时,需要明确指定文档的父子关系。父文档只需指定join字段的关系名称,而子文档则需指定父文档的主键和关系名称。
PUT order-join/_doc/1 { "orderid": "1", "buyer": "tom", "order_time": "2020-11-04 00:00:00", "my_join_field": { "name": "order" } } PUT order-join/_doc/2?routing=1 { "goodsid": "1", "goods_name": "milk", "price": 5.2, "produce_time": "2020-10-04 00:00:00", "my_join_field": { "name": "goods", "parent": "1" } }
利用join字段,可以实现一些特殊的搜索操作:
以父搜子:通过父文档的属性来查询子文档。例如,我们可以查询所有属于特定买家的商品。
POST order-join/_search
{
"query": {
"has_parent": {
"parent_type": "order",
"query": {
"term": {
"buyer": {
"value": "tom"
}
}
}
}
}
}
以子搜父:通过子文档的属性来查询父文档。例如,我们可以查询所有包含特定商品的订单。
POST order-join/_search
{
"query": {
"has_child": {
"type": "goods",
"query": {
"match_all": {}
}
}
}
}
父文档主键搜索:通过父文档的主键值来查询所有关联的子文档。例如,我们可以查询订单号为1的所有商品。
POST order-join/_search
{
"query": {
"parent_id": {
"type": "goods",
"id": "1"
}
}
}
join字段还支持children和parent聚集操作,用于对父子文档进行统计分析。
children聚集:统计每个父文档的子文档数据。例如,我们可以统计每个买家购买的商品名称和数量。
POST order-join/_search { "query": { "match_all": {} }, "aggs": { "orders": { "terms": { "field": "buyer", "size": 10 }, "aggs": { "goods_data": { "children": { "type": "goods" }, "aggs": { "goods_name": { "terms": { "field": "goods_name", "size": 10 } } } } } } } }
parent聚集:统计每个子文档的父文档数据。例如,我们可以统计每种商品的购买者信息。
POST order-join/_search { "aggs": { "goods": { "terms": { "field": "goods_name", "size": 10 }, "aggs": { "goods_data": { "parent": { "type": "goods" }, "aggs": { "orders": { "terms": { "field": "buyer", "size": 10 } } } } } } } }
除了使用join字段,还可以在应用层通过外键字段来实现父子关联。这种方法需要为父文档和子文档分别建立索引,并在查询时进行多次请求。虽然这种方法在处理父子关系时可能不如join字段高效,但它提供了更多的灵活性。
Elasticsearch中的父子索引类型join是一个强大的工具,它允许我们在同一索引中创建具有层级关系的文档。通过正确使用join字段和相关的查询DSL,我们可以有效地表示和查询具有父子关系的数据模型。然而,在使用时需要注意性能影响和数据一致性等问题,并确保与当前Elasticsearch版本的兼容性。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。