赞
踩
很明确的说,在没有代码驱动的前提下,只是单纯给MAX30102模块上电的话,MAX30102模块上的红灯是不会亮的,必须要有I2C驱动,为其模块的寄存器写入相应的配置,才能够驱动红灯亮起(里面包括红光以及红外光)。
那我们买回模块之后,如何确定模块的好坏,其实可以直接在购买物品的平台上向商家索要相应的资料,一般就包括有相应的代码可以直接使用,在接对线的情况下,一般就应该会亮灯了。
先给出我的回答,其实不配置INT引脚或者是直接不使用,也是可以读取数值的,但是配置INT引脚也不难,为其配置为相应的外部中断引脚即可,而中断的产生,也并不是说当手指放上去才会产生中断的,产生中断也可以是每次采样周期结束时才会产生中断的。
在使用商家提供的代码或者自己移植的代码时,可能会有小伙伴发现,怎么数据波动仍然那么大,心率一直处于200多到500跳动,就是数值下不来,那么大概率是因为自己的手指接触到了排针,产生了阻抗,带来了干扰,所以尽量减少手指接触到排针,可以将排针用其他东西挡着,例如胶带之类的。
当然MAX30102模块寄存器配置,I2C的写法等都有可能造成波动大的问题。
MAX30102 | OLED | 使用USART3 | ||
SCL | PB8 | SCL | PB6 | PB10 |
SDA | PB9 | SDA | PB7 | PB11 |
INT | PB4 |
- #include "max30102.h"
- #include "myiic.h"
- #include "gpio.h"
-
- /*MAX30102:
- VCC<->3.3V
- GND<->GND
- SCL<->PB8
- SDA<->PB9
- IM<->PB4
- */
- uint32_t aun_ir_buffer[500]; //IR LED sensor data
- int32_t n_ir_buffer_length; //data length
- uint32_t aun_red_buffer[500]; //Red LED sensor data
- int32_t n_sp02; //SPO2 value
- int8_t ch_spo2_valid; //indicator to show if the SP02 calculation is valid
- int32_t n_heart_rate; //heart rate value
- int8_t ch_hr_valid; //indicator to show if the heart rate calculation is valid
- uint8_t uch_dummy;
-
- //variables to calculate the on-board LED brightness that reflects the heartbeats
- uint32_t un_min, un_max, un_prev_data;
- int i;
- int32_t n_brightness;
- float f_temp;
- uint8_t temp_num=0;
- uint8_t temp[6];
- uint8_t str[100];
- uint8_t dis_hr=0,dis_spo2=0;
- int flag1=0;
- uint16_t sum[12];
- uint16_t sum1[12];
- int j,k,temp1,temp2;
- int progess,flag3=0;
- #define MAX_BRIGHTNESS 255
-
-
-
- uint8_t max30102_Bus_Write(uint8_t Register_Address, uint8_t Word_Data)
- {
-
- /* 采用串行EEPROM随即读取指令序列,连续读取若干字节 */
-
- /* 第1步:发起I2C总线启动信号 */
- IIC_Start();
-
- /* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
- IIC_Send_Byte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
-
- /* 第3步:发送ACK */
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 第4步:发送字节地址 */
- IIC_Send_Byte(Register_Address);
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 第5步:开始写入数据 */
- IIC_Send_Byte(Word_Data);
-
- /* 第6步:发送ACK */
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 发送I2C总线停止信号 */
- IIC_Stop();
- return 1; /* 执行成功 */
-
- cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
- /* 发送I2C总线停止信号 */
- IIC_Stop();
- return 0;
- }
-
-
-
- uint8_t max30102_Bus_Read(uint8_t Register_Address)
- {
- uint8_t data;
-
-
- /* 第1步:发起I2C总线启动信号 */
- IIC_Start();
-
- /* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
- IIC_Send_Byte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
-
- /* 第3步:发送ACK */
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 第4步:发送字节地址, */
- IIC_Send_Byte((uint8_t)Register_Address);
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
-
- /* 第6步:重新启动I2C总线。下面开始读取数据 */
- IIC_Start();
-
- /* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
- IIC_Send_Byte(max30102_WR_address | I2C_RD); /* 此处是读指令 */
-
- /* 第8步:发送ACK */
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 第9步:读取数据 */
- {
- data = IIC_Read_Byte(0); /* 读1个字节 */
-
- IIC_NAck(); /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
- }
- /* 发送I2C总线停止信号 */
- IIC_Stop();
- return data; /* 执行成功 返回data值 */
-
- cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
- /* 发送I2C总线停止信号 */
- IIC_Stop();
- return 0;
- }
-
-
- void max30102_FIFO_ReadWords(uint8_t Register_Address,uint16_t Word_Data[][2],uint8_t count)
- {
- uint8_t i=0;
- uint8_t no = count;
- uint8_t data1, data2;
- /* 第1步:发起I2C总线启动信号 */
- IIC_Start();
-
- /* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
- IIC_Send_Byte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
-
- /* 第3步:发送ACK */
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 第4步:发送字节地址, */
- IIC_Send_Byte((uint8_t)Register_Address);
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
-
- /* 第6步:重新启动I2C总线。下面开始读取数据 */
- IIC_Start();
-
- /* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
- IIC_Send_Byte(max30102_WR_address | I2C_RD); /* 此处是读指令 */
-
- /* 第8步:发送ACK */
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 第9步:读取数据 */
- while (no)
- {
- data1 = IIC_Read_Byte(0);
- IIC_Ack();
- data2 = IIC_Read_Byte(0);
- IIC_Ack();
- Word_Data[i][0] = (((uint16_t)data1 << 8) | data2); //
-
-
- data1 = IIC_Read_Byte(0);
- IIC_Ack();
- data2 = IIC_Read_Byte(0);
- if(1==no)
- IIC_NAck(); /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
- else
- IIC_Ack();
- Word_Data[i][1] = (((uint16_t)data1 << 8) | data2);
-
- no--;
- i++;
- }
- /* 发送I2C总线停止信号 */
- IIC_Stop();
-
- cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
- /* 发送I2C总线停止信号 */
- IIC_Stop();
- }
-
- void max30102_FIFO_ReadBytes(uint8_t Register_Address,uint8_t* Data)
- {
- max30102_Bus_Read(REG_INTR_STATUS_1);
- max30102_Bus_Read(REG_INTR_STATUS_2);
-
- /* 第1步:发起I2C总线启动信号 */
- IIC_Start();
-
- /* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
- IIC_Send_Byte(max30102_WR_address | I2C_WR); /* 此处是写指令 */
-
- /* 第3步:发送ACK */
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 第4步:发送字节地址, */
- IIC_Send_Byte((uint8_t)Register_Address);
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
-
- /* 第6步:重新启动I2C总线。下面开始读取数据 */
- IIC_Start();
-
- /* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
- IIC_Send_Byte(max30102_WR_address | I2C_RD); /* 此处是读指令 */
-
- /* 第8步:发送ACK */
- if (IIC_Wait_Ack() != 0)
- {
- goto cmd_fail; /* EEPROM器件无应答 */
- }
-
- /* 第9步:读取数据 */
- Data[0] = IIC_Read_Byte(1);
- Data[1] = IIC_Read_Byte(1);
- Data[2] = IIC_Read_Byte(1);
- Data[3] = IIC_Read_Byte(1);
- Data[4] = IIC_Read_Byte(1);
- Data[5] = IIC_Read_Byte(0);
- /* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
- /* 发送I2C总线停止信号 */
- IIC_Stop();
-
- cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 */
- /* 发送I2C总线停止信号 */
- IIC_Stop();
-
- // uint8_t i;
- // uint8_t fifo_wr_ptr;
- // uint8_t firo_rd_ptr;
- // uint8_t number_tp_read;
- // //Get the FIFO_WR_PTR
- // fifo_wr_ptr = max30102_Bus_Read(REG_FIFO_WR_PTR);
- // //Get the FIFO_RD_PTR
- // firo_rd_ptr = max30102_Bus_Read(REG_FIFO_RD_PTR);
- //
- // number_tp_read = fifo_wr_ptr - firo_rd_ptr;
- //
- // //for(i=0;i<number_tp_read;i++){
- // if(number_tp_read>0){
- // IIC_ReadBytes(max30102_WR_address,REG_FIFO_DATA,Data,6);
- // }
-
- //max30102_Bus_Write(REG_FIFO_RD_PTR,fifo_wr_ptr);
- }
-
- void max30102_init(void)
- {
- // GPIO_InitTypeDef GPIO_InitStructure;
-
- // RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
- // GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;
- // GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
- // GPIO_Init(GPIOB, &GPIO_InitStructure);
-
- // IIC_Init();
-
- max30102_reset();
-
- // max30102_Bus_Write(REG_MODE_CONFIG, 0x0b); //mode configuration : temp_en[3] MODE[2:0]=010 HR only enabled 011 SP02 enabled
- // max30102_Bus_Write(REG_INTR_STATUS_2, 0xF0); //open all of interrupt
- // max30102_Bus_Write(REG_INTR_STATUS_1, 0x00); //all interrupt clear
- // max30102_Bus_Write(REG_INTR_ENABLE_2, 0x02); //DIE_TEMP_RDY_EN
- // max30102_Bus_Write(REG_TEMP_CONFIG, 0x01); //SET TEMP_EN
-
- // max30102_Bus_Write(REG_SPO2_CONFIG, 0x47); //SPO2_SR[4:2]=001 100 per second LED_PW[1:0]=11 16BITS
-
- // max30102_Bus_Write(REG_LED1_PA, 0x47);
- // max30102_Bus_Write(REG_LED2_PA, 0x47);
-
-
-
- max30102_Bus_Write(REG_INTR_ENABLE_1,0xc0); // INTR setting
- max30102_Bus_Write(REG_INTR_ENABLE_2,0x00);
- max30102_Bus_Write(REG_FIFO_WR_PTR,0x00); //FIFO_WR_PTR[4:0]
- max30102_Bus_Write(REG_OVF_COUNTER,0x00); //OVF_COUNTER[4:0]
- max30102_Bus_Write(REG_FIFO_RD_PTR,0x00); //FIFO_RD_PTR[4:0]
- max30102_Bus_Write(REG_FIFO_CONFIG,0x0f); //sample avg = 1, fifo rollover=false, fifo almost full = 17
- max30102_Bus_Write(REG_MODE_CONFIG,0x03); //0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LED
- max30102_Bus_Write(REG_SPO2_CONFIG,0x27); // SPO2_ADC range = 4096nA, SPO2 sample rate (100 Hz), LED pulseWidth (400uS)
- max30102_Bus_Write(REG_LED1_PA,0x24); //Choose value for ~ 7mA for LED1
- max30102_Bus_Write(REG_LED2_PA,0x24); // Choose value for ~ 7mA for LED2
- max30102_Bus_Write(REG_PILOT_PA,0x7f); // Choose value for ~ 25mA for Pilot LED
-
-
- }
-
- void max30102_reset(void)
- {
- max30102_Bus_Write(REG_MODE_CONFIG,0x40);
- max30102_Bus_Write(REG_MODE_CONFIG,0x40);
- }
-
-
-
-
-
-
- void maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data)
- {
-
- IIC_Write_One_Byte(I2C_WRITE_ADDR,uch_addr,uch_data);
- }
-
- void maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data)
- {
-
-
- IIC_Read_One_Byte(I2C_WRITE_ADDR,uch_addr,puch_data);
- }
-
- void maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led)
- {
- uint32_t un_temp;
- unsigned char uch_temp;
- char ach_i2c_data[6];
- *pun_red_led=0;
- *pun_ir_led=0;
-
-
- //read and clear status register
- maxim_max30102_read_reg(REG_INTR_STATUS_1, &uch_temp);
- maxim_max30102_read_reg(REG_INTR_STATUS_2, &uch_temp);
-
- IIC_ReadBytes(I2C_WRITE_ADDR,REG_FIFO_DATA,(uint8_t *)ach_i2c_data,6);
-
- un_temp=(unsigned char) ach_i2c_data[0];
- un_temp<<=16;
- *pun_red_led+=un_temp;
- un_temp=(unsigned char) ach_i2c_data[1];
- un_temp<<=8;
- *pun_red_led+=un_temp;
- un_temp=(unsigned char) ach_i2c_data[2];
- *pun_red_led+=un_temp;
-
- un_temp=(unsigned char) ach_i2c_data[3];
- un_temp<<=16;
- *pun_ir_led+=un_temp;
- un_temp=(unsigned char) ach_i2c_data[4];
- un_temp<<=8;
- *pun_ir_led+=un_temp;
- un_temp=(unsigned char) ach_i2c_data[5];
- *pun_ir_led+=un_temp;
- *pun_red_led&=0x03FFFF; //Mask MSB [23:18]
- *pun_ir_led&=0x03FFFF; //Mask MSB [23:18]
- }
-
-
- void dis_DrawCurve(uint32_t* data,uint8_t x)
- {
- uint16_t i;
- uint32_t max=0,min=262144;
- uint32_t temp;
- uint32_t compress;
-
- for(i=0;i<128*2;i++)
- {
- if(data[i]>max)
- {
- max = data[i];
- }
- if(data[i]<min)
- {
- min = data[i];
- }
- }
-
- compress = (max-min)/20;
-
- for(i=0;i<128;i++)
- {
- temp = data[i*2] + data[i*2+1];
- temp/=2;
- temp -= min;
- temp/=compress;
- if(temp>20)temp=20;
- }
- }
-
-
- void MAX30102_data_set()
- {
- // printf("\r\n MAX30102 init \r\n");
-
- un_min=0x3FFFF;
- un_max=0;
-
- n_ir_buffer_length=500; //buffer length of 100 stores 5 seconds of samples running at 100sps
- //read the first 500 samples, and determine the signal range
- for(i=0;i<n_ir_buffer_length;i++)
- {
- while(MAX30102_INT==1); //wait until the interrupt pin asserts
-
- max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp);
- aun_red_buffer[i] = (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2]; // Combine values to get the actual number
- aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5]; // Combine values to get the actual number
-
- if(un_min>aun_red_buffer[i])
- un_min=aun_red_buffer[i]; //update signal min
- if(un_max<aun_red_buffer[i])
- un_max=aun_red_buffer[i]; //update signal max
- }
- un_prev_data=aun_red_buffer[i];
- //calculate heart rate and SpO2 after first 500 samples (first 5 seconds of samples)
- maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);
- }
-
-
- void MAX30102_get(uint8_t *hr,uint8_t *spo2)
- {
- i=0;
- un_min=0x3FFFF;
- un_max=0;
-
- //dumping the first 100 sets of samples in the memory and shift the last 400 sets of samples to the top
- for(i=100;i<500;i++)
- {
- aun_red_buffer[i-100]=aun_red_buffer[i];
- aun_ir_buffer[i-100]=aun_ir_buffer[i];
-
- //update the signal min and max
- if(un_min>aun_red_buffer[i])
- un_min=aun_red_buffer[i];
- if(un_max<aun_red_buffer[i])
- un_max=aun_red_buffer[i];
- }
- //take 100 sets of samples before calculating the heart rate.
- for(i=400;i<500;i++)
- {
- un_prev_data=aun_red_buffer[i-1];
- while(MAX30102_INT==1);
-
- max30102_FIFO_ReadBytes(REG_FIFO_DATA,temp);
- aun_red_buffer[i] = (long)((long)((long)temp[0]&0x03)<<16) | (long)temp[1]<<8 | (long)temp[2]; // Combine values to get the actual number
- aun_ir_buffer[i] = (long)((long)((long)temp[3] & 0x03)<<16) |(long)temp[4]<<8 | (long)temp[5]; // Combine values to get the actual number
-
- if(aun_red_buffer[i]>un_prev_data)
- {
- f_temp=aun_red_buffer[i]-un_prev_data;
- f_temp/=(un_max-un_min);
- f_temp*=MAX_BRIGHTNESS;
- n_brightness-=(int)f_temp;
- if(n_brightness<0)
- n_brightness=0;
- }
- else
- {
- f_temp=un_prev_data-aun_red_buffer[i];
- f_temp/=(un_max-un_min);
- f_temp*=MAX_BRIGHTNESS;
- n_brightness+=(int)f_temp;
- if(n_brightness>MAX_BRIGHTNESS)
- n_brightness=MAX_BRIGHTNESS;
- }
-
- printf("red=");
- printf("%i", aun_red_buffer[i]);
- printf(", ir=");
- printf("%i", aun_ir_buffer[i]);
- printf(", HR=%i, ", n_heart_rate);
- printf("HRvalid=%i, ", ch_hr_valid);
- printf("SpO2=%i, ", n_sp02);
- printf("SPO2Valid=%i\n\r", ch_spo2_valid);
-
- //当心率满足一下条件后,就读取一次
- if(ch_hr_valid == 1 && n_heart_rate<150&&n_heart_rate>60&&aun_red_buffer[i]>80000&&ch_spo2_valid==1&&aun_ir_buffer[i]>120000)
- {
- sum[j] = n_heart_rate;
- sum1[j]=n_sp02;
- }
-
- //读取11个数值,第一个舍弃,比较后面10个数据,选取最小值作为最后的心率
- if(j==11)
- {
- for(j = 1;j <10;j++)
- {
- for(k = j+1;k <10;k++)
- {
- if(sum[k] < sum[j])
- {
- temp1 = sum[j];
- sum[j] = sum[k];
- sum[k] = temp1;
- }
- if(sum1[k] < sum1[j])
- {
- temp2 = sum1[j];
- sum1[j] = sum1[k];
- sum1[k] = temp2;
- }
- }
- }
- dis_hr=sum[1];
- dis_spo2=sum1[8];
- j = 0;
- }
-
- *hr = dis_hr;
- *spo2 = dis_spo2;
-
- if(progess==100)
- flag3=1;
-
- }
-
- if(sum[j]!=0)
- {
- if(progess!=100&&j!=0)
- progess+=10;
-
- j++;
- }
-
- maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);
- //send samples and calculation result to terminal program through UART
-
- //显示进度,到100则是读取成功
- OLED_ShowNum(90,0,progess,3,16);
-
-
- //红光在上,红外在下
- dis_DrawCurve(aun_red_buffer,20);
- dis_DrawCurve(aun_ir_buffer,0);
-
-
- }
- #ifndef __MAX30102_H
- #define __MAX30102_H
- #include "main.h"
- //
-
- #define MAX30102_INT HAL_GPIO_ReadPin(GPIOB,MAX30102_INT_Pin)
-
- #define I2C_WR 0 /* 写控制bit */
- #define I2C_RD 1 /* 读控制bit */
-
- #define max30102_WR_address 0xAE
-
- #define I2C_WRITE_ADDR 0xAE
- #define I2C_READ_ADDR 0xAF
-
- //register addresses
- #define REG_INTR_STATUS_1 0x00
- #define REG_INTR_STATUS_2 0x01
- #define REG_INTR_ENABLE_1 0x02
- #define REG_INTR_ENABLE_2 0x03
- #define REG_FIFO_WR_PTR 0x04
- #define REG_OVF_COUNTER 0x05
- #define REG_FIFO_RD_PTR 0x06
- #define REG_FIFO_DATA 0x07
- #define REG_FIFO_CONFIG 0x08
- #define REG_MODE_CONFIG 0x09
- #define REG_SPO2_CONFIG 0x0A
- #define REG_LED1_PA 0x0C
- #define REG_LED2_PA 0x0D
- #define REG_PILOT_PA 0x10
- #define REG_MULTI_LED_CTRL1 0x11
- #define REG_MULTI_LED_CTRL2 0x12
- #define REG_TEMP_INTR 0x1F
- #define REG_TEMP_FRAC 0x20
- #define REG_TEMP_CONFIG 0x21
- #define REG_PROX_INT_THRESH 0x30
- #define REG_REV_ID 0xFE
- #define REG_PART_ID 0xFF
-
- void max30102_init(void);
- void max30102_reset(void);
- uint8_t max30102_Bus_Write(uint8_t Register_Address, uint8_t Word_Data);
- uint8_t max30102_Bus_Read(uint8_t Register_Address);
- void max30102_FIFO_ReadWords(uint8_t Register_Address,uint16_t Word_Data[][2],uint8_t count);
- void max30102_FIFO_ReadBytes(uint8_t Register_Address,uint8_t* Data);
-
- void maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data);
- void maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data);
- void maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led);
-
- void dis_DrawCurve(uint32_t* data,uint8_t x);
- void MAX30102_get(uint8_t *hr,uint8_t *spo2);
- void MAX30102_data_set();
-
-
- #endif
- #include "algorithm.h"
- #include "main.h"
-
- void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid,
- int32_t *pn_heart_rate, int8_t *pch_hr_valid)
- /**
- * \brief Calculate the heart rate and SpO2 level
- * \par Details
- * By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed.
- * Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow.
- * Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio.
- *
- * \param[in] *pun_ir_buffer - IR sensor data buffer
- * \param[in] n_ir_buffer_length - IR sensor data buffer length
- * \param[in] *pun_red_buffer - Red sensor data buffer
- * \param[out] *pn_spo2 - Calculated SpO2 value
- * \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid
- * \param[out] *pn_heart_rate - Calculated heart rate value
- * \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid
- *
- * \retval None
- */
- {
- uint32_t un_ir_mean ,un_only_once ;
- int32_t k ,n_i_ratio_count;
- int32_t i, s, m, n_exact_ir_valley_locs_count ,n_middle_idx;
- int32_t n_th1, n_npks,n_c_min;
- int32_t an_ir_valley_locs[15] ;
- int32_t an_exact_ir_valley_locs[15] ;
- int32_t an_dx_peak_locs[15] ;
- int32_t n_peak_interval_sum;
-
- int32_t n_y_ac, n_x_ac;
- int32_t n_spo2_calc;
- int32_t n_y_dc_max, n_x_dc_max;
- int32_t n_y_dc_max_idx, n_x_dc_max_idx;
- int32_t an_ratio[5],n_ratio_average;
- int32_t n_nume, n_denom ;
- // remove DC of ir signal
- un_ir_mean =0;
- for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ;
- un_ir_mean =un_ir_mean/n_ir_buffer_length ;
- for (k=0 ; k<n_ir_buffer_length ; k++ ) an_x[k] = pun_ir_buffer[k] - un_ir_mean ;
-
- // 4 pt Moving Average
- for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
- n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]);
- an_x[k]= n_denom/(int32_t)4;
- }
-
- // get difference of smoothed IR signal
-
- for( k=0; k<BUFFER_SIZE-MA4_SIZE-1; k++)
- an_dx[k]= (an_x[k+1]- an_x[k]);
-
- // 2-pt Moving Average to an_dx
- for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){
- an_dx[k] = ( an_dx[k]+an_dx[k+1])/2 ;
- }
-
- // hamming window
- // flip wave form so that we can detect valley with peak detector
- for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){
- s= 0;
- for( k=i; k<i+ HAMMING_SIZE ;k++){
- s -= an_dx[k] *auw_hamm[k-i] ;
- }
- an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm
- }
-
-
- n_th1=0; // threshold calculation
- for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){
- n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ;
- }
- n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE);
- // peak location is acutally index for sharpest location of raw signal since we flipped the signal
- maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks
-
- n_peak_interval_sum =0;
- if (n_npks>=2){
- for (k=1; k<n_npks; k++)
- n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]);
- n_peak_interval_sum=n_peak_interval_sum/(n_npks-1);
- *pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes
- *pch_hr_valid = 1;
- }
- else {
- *pn_heart_rate = -999;
- *pch_hr_valid = 0;
- }
-
- for ( k=0 ; k<n_npks ;k++)
- an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2;
-
-
- // raw value : RED(=y) and IR(=X)
- // we need to assess DC and AC value of ir and red PPG.
- for (k=0 ; k<n_ir_buffer_length ; k++ ) {
- an_x[k] = pun_ir_buffer[k] ;
- an_y[k] = pun_red_buffer[k] ;
- }
-
- // find precise min near an_ir_valley_locs
- n_exact_ir_valley_locs_count =0;
- for(k=0 ; k<n_npks ;k++){
- un_only_once =1;
- m=an_ir_valley_locs[k];
- n_c_min= 16777216;//2^24;
- if (m+5 < BUFFER_SIZE-HAMMING_SIZE && m-5 >0){
- for(i= m-5;i<m+5; i++)
- if (an_x[i]<n_c_min){
- if (un_only_once >0){
- un_only_once =0;
- }
- n_c_min= an_x[i] ;
- an_exact_ir_valley_locs[k]=i;
- }
- if (un_only_once ==0)
- n_exact_ir_valley_locs_count ++ ;
- }
- }
- if (n_exact_ir_valley_locs_count <2 ){
- *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range
- *pch_spo2_valid = 0;
- return;
- }
- // 4 pt MA
- for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
- an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4;
- an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4;
- }
-
- //using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio
- //finding AC/DC maximum of raw ir * red between two valley locations
- n_ratio_average =0;
- n_i_ratio_count =0;
-
- for(k=0; k< 5; k++) an_ratio[k]=0;
- for (k=0; k< n_exact_ir_valley_locs_count; k++){
- if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){
- *pn_spo2 = -999 ; // do not use SPO2 since valley loc is out of range
- *pch_spo2_valid = 0;
- return;
- }
- }
- // find max between two valley locations
- // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2
-
- for (k=0; k< n_exact_ir_valley_locs_count-1; k++){
- n_y_dc_max= -16777216 ;
- n_x_dc_max= - 16777216;
- if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){
- for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){
- if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; }
- if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;}
- }
- n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red
- n_y_ac= an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]) ;
-
-
- n_y_ac= an_y[n_y_dc_max_idx] - n_y_ac; // subracting linear DC compoenents from raw
- n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir
- n_x_ac= an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]);
- n_x_ac= an_x[n_y_dc_max_idx] - n_x_ac; // subracting linear DC compoenents from raw
- n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value
- n_denom= ( n_x_ac *n_y_dc_max)>>7;
- if (n_denom>0 && n_i_ratio_count <5 && n_nume != 0)
- {
- an_ratio[n_i_ratio_count]= (n_nume*100)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ;
- n_i_ratio_count++;
- }
- }
- }
-
- maxim_sort_ascend(an_ratio, n_i_ratio_count);
- n_middle_idx= n_i_ratio_count/2;
-
- if (n_middle_idx >1)
- n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median
- else
- n_ratio_average = an_ratio[n_middle_idx ];
-
- if( n_ratio_average>2 && n_ratio_average <184){
- n_spo2_calc= uch_spo2_table[n_ratio_average] ;
- *pn_spo2 = n_spo2_calc ;
- *pch_spo2_valid = 1;// float_SPO2 = -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ; // for comparison with table
- }
- else{
- *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range
- *pch_spo2_valid = 0;
- }
- }
-
-
- void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num)
- /**
- * \brief Find peaks
- * \par Details
- * Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
- *
- * \retval None
- */
- {
- maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height );
- maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance );
- *pn_npks = min( *pn_npks, n_max_num );
- }
-
- void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height)
- /**
- * \brief Find peaks above n_min_height
- * \par Details
- * Find all peaks above MIN_HEIGHT
- *
- * \retval None
- */
- {
- int32_t i = 1, n_width;
- *pn_npks = 0;
-
- while (i < n_size-1){
- if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i-1]){ // find left edge of potential peaks
- n_width = 1;
- while (i+n_width < n_size && pn_x[i] == pn_x[i+n_width]) // find flat peaks
- n_width++;
- if (pn_x[i] > pn_x[i+n_width] && (*pn_npks) < 15 ){ // find right edge of peaks
- pn_locs[(*pn_npks)++] = i;
- // for flat peaks, peak location is left edge
- i += n_width+1;
- }
- else
- i += n_width;
- }
- else
- i++;
- }
- }
-
-
- void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance)
- /**
- * \brief Remove peaks
- * \par Details
- * Remove peaks separated by less than MIN_DISTANCE
- *
- * \retval None
- */
- {
-
- int32_t i, j, n_old_npks, n_dist;
-
- /* Order peaks from large to small */
- maxim_sort_indices_descend( pn_x, pn_locs, *pn_npks );
-
- for ( i = -1; i < *pn_npks; i++ ){
- n_old_npks = *pn_npks;
- *pn_npks = i+1;
- for ( j = i+1; j < n_old_npks; j++ ){
- n_dist = pn_locs[j] - ( i == -1 ? -1 : pn_locs[i] ); // lag-zero peak of autocorr is at index -1
- if ( n_dist > n_min_distance || n_dist < -n_min_distance )
- pn_locs[(*pn_npks)++] = pn_locs[j];
- }
- }
-
- // Resort indices longo ascending order
- maxim_sort_ascend( pn_locs, *pn_npks );
- }
-
- void maxim_sort_ascend(int32_t *pn_x,int32_t n_size)
- /**
- * \brief Sort array
- * \par Details
- * Sort array in ascending order (insertion sort algorithm)
- *
- * \retval None
- */
- {
- int32_t i, j, n_temp;
- for (i = 1; i < n_size; i++) {
- n_temp = pn_x[i];
- for (j = i; j > 0 && n_temp < pn_x[j-1]; j--)
- pn_x[j] = pn_x[j-1];
- pn_x[j] = n_temp;
- }
- }
-
- void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size)
- /**
- * \brief Sort indices
- * \par Details
- * Sort indices according to descending order (insertion sort algorithm)
- *
- * \retval None
- */
- {
- int32_t i, j, n_temp;
- for (i = 1; i < n_size; i++) {
- n_temp = pn_indx[i];
- for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j-1]]; j--)
- pn_indx[j] = pn_indx[j-1];
- pn_indx[j] = n_temp;
- }
- }
-
-
-
- #ifndef ALGORITHM_H_
- #define ALGORITHM_H_
-
- #include "main.h"
-
- #define true 1
- #define false 0
- #define FS 100
- #define BUFFER_SIZE (FS* 5)
- #define HR_FIFO_SIZE 7
- #define MA4_SIZE 4 // DO NOT CHANGE
- #define HAMMING_SIZE 5// DO NOT CHANGE
- #define min(x,y) ((x) < (y) ? (x) : (y))
-
- const uint16_t auw_hamm[31]={ 41, 276, 512, 276, 41 }; //Hamm= long16(512* hamming(5)');
- //uch_spo2_table is computed as -45.060*ratioAverage* ratioAverage + 30.354 *ratioAverage + 94.845 ;
- const uint8_t uch_spo2_table[184]={ 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99,
- 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
- 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97,
- 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91,
- 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81,
- 80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67,
- 66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50,
- 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29,
- 28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5,
- 3, 2, 1 } ;
- static int32_t an_dx[ BUFFER_SIZE-MA4_SIZE]; // delta
- static int32_t an_x[ BUFFER_SIZE]; //ir
- static int32_t an_y[ BUFFER_SIZE]; //red
-
-
- void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer , int32_t n_ir_buffer_length, uint32_t *pun_red_buffer , int32_t *pn_spo2, int8_t *pch_spo2_valid , int32_t *pn_heart_rate , int8_t *pch_hr_valid);
- void maxim_find_peaks( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num );
- void maxim_peaks_above_min_height( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height );
- void maxim_remove_close_peaks( int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance );
- void maxim_sort_ascend( int32_t *pn_x, int32_t n_size );
- void maxim_sort_indices_descend( int32_t *pn_x, int32_t *pn_indx, int32_t n_size);
-
- #endif /* ALGORITHM_H_ */
- #include "myiic.h"
- #include "stm32f1xx_hal.h"
-
-
- //产生IIC起始信号
- void I2C_delay(void)
- {
- uint16_t i=60; //Set delay time value
- while(i)
- {
- i--;
- }
- }
-
- void IIC_Start(void)
- {
- SDA_H;
- I2C_delay();
- SCL_H;
- I2C_delay();
- SDA_L;
- I2C_delay();
- SCL_L;
- I2C_delay();
- }
- //产生IIC停止信号
- void IIC_Stop(void)
- {
- SCL_L;
- I2C_delay();
- SDA_L;
- I2C_delay();
- SCL_H;
- I2C_delay();
- SDA_H;
- I2C_delay();
- }
- //等待应答信号到来
- //返回值:1,接收应答失败
- // 0,接收应答成功
- uint8_t IIC_Wait_Ack(void)
- {
- uint8_t re;
- SCL_L;
- I2C_delay();
- SDA_H;
- I2C_delay();
- SCL_H;
- I2C_delay();
- if(SDA_read)
- {
- re=1;
- }
- else re=0;
- SCL_L;
- return re;
-
- // uint8_t re;
-
- // SDA_L; /* CPU释放SDA总线 */ //让它必须应答 自己修改的
- // I2C_delay();
- // SCL_H; /* CPU驱动SCL = 1, 此时器件会返回ACK应答 */
- // I2C_delay();
- //
- // re = SDA_read;/* CPU读取SDA口线状态 */
-
- // SCL_L;
- // I2C_delay();
- // return re;
- }
- //产生ACK应答
- void IIC_Ack(void)
- {
- SCL_L;
- I2C_delay();
- SDA_L;
- I2C_delay();
- SCL_H;
- I2C_delay();
- SCL_L;
- I2C_delay();
- }
- //不产生ACK应答
- void IIC_NAck(void)
- {
- SCL_L;
- I2C_delay();
- SDA_H;
- I2C_delay();
- SCL_H;
- I2C_delay();
- SCL_L;
- I2C_delay();
- }
- //IIC发送一个字节
- //返回从机有无应答
- //1,有应答
- //0,无应答
- void IIC_Send_Byte(uint8_t SendByte)
- {
- uint8_t i=8;
-
- while(i--)
- {
- SCL_L;
- I2C_delay();
- if((SendByte&0x80))
- {
- SDA_H;
- }
- else
- {
- SDA_L;
- }
- SendByte<<=1;
- I2C_delay();
- SCL_H;
- I2C_delay();
-
- }
- SCL_L;
- }
- //读1个字节,ack=1时,发送ACK,ack=0,发送nACK
- uint8_t IIC_Read_Byte(unsigned char ack)
- {
- unsigned char i=8,receive=0;
- SDA_H;
- while(i--)
- {
- receive<<=1;
- SCL_L;
- I2C_delay();
- SCL_H;
- I2C_delay();
- if(SDA_read)
- {
- receive|=0x01;
- }
- }
- SCL_L;
- if (!ack)
- IIC_NAck();//发送nACK
- else
- IIC_Ack(); //发送ACK
- return receive;
- }
-
-
- void IIC_WriteBytes(uint8_t WriteAddr,uint8_t* data,uint8_t dataLength)
- {
- uint8_t i;
- IIC_Start();
-
- IIC_Send_Byte(WriteAddr); //发送写命令
- IIC_Wait_Ack();
-
- for(i=0;i<dataLength;i++)
- {
- IIC_Send_Byte(data[i]);
- IIC_Wait_Ack();
- }
- IIC_Stop();//产生一个停止条件
- I2C_delay();
- }
-
- void IIC_ReadBytes(uint8_t deviceAddr, uint8_t writeAddr,uint8_t* data,uint8_t dataLength)
- {
- uint8_t i;
- IIC_Start();
-
- IIC_Send_Byte(deviceAddr); //发送写命令
- IIC_Wait_Ack();
- IIC_Send_Byte(writeAddr);
- IIC_Wait_Ack();
- IIC_Send_Byte(deviceAddr|0X01);//进入接收模式
- IIC_Wait_Ack();
-
- for(i=0;i<dataLength-1;i++)
- {
- data[i] = IIC_Read_Byte(1);
- }
- data[dataLength-1] = IIC_Read_Byte(0);
- IIC_Stop();//产生一个停止条件
- I2C_delay();
- }
-
- void IIC_Read_One_Byte(uint8_t daddr,uint8_t addr,uint8_t* data)
- {
- IIC_Start();
-
- IIC_Send_Byte(daddr); //发送写命令
- IIC_Wait_Ack();
- IIC_Send_Byte(addr);//发送地址
- IIC_Wait_Ack();
- IIC_Start();
- IIC_Send_Byte(daddr|0X01);//进入接收模式
- IIC_Wait_Ack();
- *data = IIC_Read_Byte(0);
- IIC_Stop();//产生一个停止条件
- }
-
- void IIC_Write_One_Byte(uint8_t daddr,uint8_t addr,uint8_t data)
- {
- IIC_Start();
-
- IIC_Send_Byte(daddr); //发送写命令
- IIC_Wait_Ack();
- IIC_Send_Byte(addr);//发送地址
- IIC_Wait_Ack();
- IIC_Send_Byte(data); //发送字节
- IIC_Wait_Ack();
- IIC_Stop();//产生一个停止条件
- I2C_delay();
- }
- int main(void)
- {
- /* USER CODE BEGIN 1 */
-
-
- /* USER CODE END 1 */
-
- /* MCU Configuration--------------------------------------------------------*/
-
- /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
- HAL_Init();
-
- /* USER CODE BEGIN Init */
-
- /* USER CODE END Init */
-
- /* Configure the system clock */
- SystemClock_Config();
-
- /* USER CODE BEGIN SysInit */
-
- /* USER CODE END SysInit */
-
- /* Initialize all configured peripherals */
- MX_GPIO_Init();
-
- MX_USART3_UART_Init();
- /* USER CODE BEGIN 2 */
- OLED_Init(); //初始化OLED
- OLED_Clear() ;
-
- max30102_init();
- MAX30102_data_set();
-
-
- //wait until the user presses a key
- // while(pc.readable()==0)
- // {
- // pc.printf("\x1B[2J"); //clear terminal program screen
- // pc.printf("Press any key to start conversion\n\r");
- // wait(1);
- // }
- // uch_dummy=getchar();
-
-
- /* USER CODE END 2 */
-
- /* Infinite loop */
- /* USER CODE BEGIN WHILE */
-
- // HAL_GPIO_WritePin(GPIOB,MAX30102_INT_Pin,SET);
-
- while (1)
- {
- /* USER CODE END WHILE */
-
- /* USER CODE BEGIN 3 */
-
- MAX30102_get(&HR,&SPO2);
- OLED_ShowNum(30,0,HR,3,16);
- OLED_ShowNum(60,0,SPO2,3,16);
-
-
-
-
- }
- /* USER CODE END 3 */
- }
这个大家可以直接去上网购物平台搜索OLED,一般商家都会有现成的代码可以使用,比如我这里用的则是中景园的OLED代码,大家也可以直接上购物平台查。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。