赞
踩
TCP/IP协议,英文全称Transmission Control Protocol/Internet Protocol,包含了一系列构成互联网基础的网络协议,是Internet的核心协议。TCP/IP协议是一个协议簇,包含了应用协议、传输协议、网际互联协议和路由控制协议。
应用协议:TCP/IP体系中的应用层协议,主要包括HTTP(超文本传输协议)、SMTP(简单邮件传送协议)、FTP(文件传输协议)、TELNET(远程登录协议)、SNMP(简单网络管理协议)。
传输协议:TCP/IP体系中的传输层协议,主要包括TCP(传输控制协议)、UDP(用户数据报协议)。
网际互联协议:TCP/IP体系中的网络层协议,主要包括IP(Internet协议)、ARP(地址解析协议)、RARP(逆地址解析协议)、ICMP(因特网控制报文协议)、IGMP(因特网组管理协议)。
路由控制协议:TCP/IP体系中的链路层协议,分为内部网关协议和域间路由协议。内部网关协议包括RIP(路由信息协议)、IGRP(内部网关路由协议)、EIGRP(增强内部网关路由协议)、OSPF(开放式最短路径优先协议)、IS-IS(中间系统到中间系统路由协议)。域间路由协议包括BGP(边界网关协议)。
如下图所示:
TCP/IP是一套用于网络通信的协议集合或者系统。TCP/IP协议模型就有OSI模型分为7层。但其实一般我们所谈到的都是四层的TCP/IP协议栈。
网络接口层:主要是指一些物理层层次的接口,比如电缆等
网络层:提供了独立于硬件的逻辑寻址,实现物理地址和逻辑地址的转换。网络层协议包括IP协议(网际协议),ICMP协议(互联网控制报文协议),IGMP协议(Internet组协议管理)
传输层:为网络提供了流量控制,错误控制和确认服务。传输层有两个互不相同的传输协议:TCP(传输控制协议)、UDP(用户数据报协议)
应用层:为文件传输,网络排错和Internet操作提供具体的程序应用
TCP/IP协议族中有很多协议,这些协议处于不同的层,它们之间的关系如下图所示。
每个应用层协议都是为了解决某一类应用问题而定义的,各种应用进程就是通过不同的应用层协议来使用网络所提供的服务。图1-4中的应用进程代表实现不同应用层协议功能的进程。例如,实现文件传输协议的FTP应用进程可以为用户提供计算机之间的文件传输服务,实现超文本传输协议的HTTP应用进程可以为用户提供浏览Web网页的功能等。
TCP和UDP是两个传输层协议。一般地,应用进程可以选择使用TCP或者UDP协议。如果应用层协议要求传输层提供可靠的服务,则应该选择TCP协议;否则,如果应用层协议要求较高的数据传输速率,但是可以容忍一定的数据丢失,则可以选择UDP协议。TCP协议的数据单元称为TCP报文段或简称TCP段(TCPsegment),UDP协议的数据单元称为UDP数据报(UDPdatagram)。
IP协议是网际层上的一个主要协议。TCP和UDP协议都可以直接使用IP协议所提供的服务。IP协议的数据传送单位称为IP数据报或IP分组。TCP报文段或UDP数据报都可以封装在IP数据报中,以便在互联网上传输。除IP协议外,网际层还有其他协议,例如ICMP协议用于报告差错和其他重要信息;IGMP是多播组管理协议,是一个与多播有关的协议;ARP(地址解析协议)和RARP(逆向地址解析协议)用于提供ⅡP地址与物理地址的映射功能。IP数据报可以在不同的物理网络上进行传送。通过以太网传送的数据单元称为以太网帧,或简称为帧(frame)。
在发送方(也称为源主机),当应用程序使用TCP或UDP传送用户数据时,将用户数据送人TCP/IP协议栈,然后自上而下地逐个通过每一层,直到被当做一串比特流送入网络。其中每一层对收到的数据都需要增加一些首部信息,有时还需要增加尾部信息。这些操作过程称为封装,如图所示。
TCP、UDP、ICMP和IGMP等协议都要使用IP数据报传送数据,所以必须在IP数据报的首部加入某种标识,以说明是哪个协议的数据封装到了IP数据报中。IP数据报首部定义的一个8位的“协议”宇段就是为此目的而设置的。协议宇段的值为1表示ICMP,为2表示IGMP,为6表示TCP,为17表示UDP。
类似地,许多应用进程使用TCP或UDP传送数据,则需要在TCP段或UDP数据报首部定义一个应用程序标识符。TCP和UDP都使用一个16位的端口号来标识不同的应用程序,TCP和UDP把“源端口号”和“目的端口号”分别存人TCP段首部和UDP数据报首部。网络接口分别发送和接收IP、ARP、RARP的数据,同理,也必须在以太网(假定物理网络是一个以太网)的首部加入一个字段,用来说明是哪个协议的数据。为此,以太网帧首部定义了一个16位的“类型”字段。当接收方(也称目的主机)收到一个以太网帧时,数据就开始在协议栈中自下而上传送。各层协议利用报文首部所携带的协议控制信息做相应的处理,然后去掉各层协议数据单元的首部,将封装的数据交给上层协议。每层协议都要检查协议首部中的协议标识,以确定让哪一个协议接收数据,这个过程称为拆封。下图说明了以太网数据帧的拆封过程。
总而言之,发送数据时需要自上而下,层层封装。接收数据时需要自下而上,层层拆封。
两个端系统的通信会涉及不同层的协议。如下图所示,主机A和主机B在同一个局域网(以太网)上,两台主机都运行实现FTP协议的应用进程,它们的通信过程所涉及到的主要协议都标识在下图中。
主机A主机B大多数网络应用程序都设计成客户—服务器方式,客户是服务请求方,服务器是服务提供方,服务器为客户提供某种服务。例如,FTP服务器允许客户访问FTP服务器所在主机上的文件,WWW服务器允许客户(浏览器)访问WWW服务器所在主机上的网页,等等。在两个端系统的同一层上,双方都有对应的一个或多个协议进行通信。例如传输层利用TCP或UDP等进行通信,网际层利用IP进行通信。
上图局域网上运行FTP的两台主机从前面的讲述可知,应用进程的数据要经过主机A(源主机)自上而下的封装,然后在网络中传输,最后在主机B(目的主机)经过自下而上的拆封这样复杂的处理过程,才能到达目的主机的应用进程。但是,对用户来说,这些复杂的处理过程都屏蔽掉了,好像是主机A的应用进程直接把数据交给了主机B的应用进程。同理,我们可以认为,任何两个对等层(peerlayer),例如传输层、网际层、网络接口层之间的通信,如同上图中标识的一样,好像是将数据通过水平虚线直接传递给对方,这就是所谓的对等层之间的通信。实际上,协议就是在两个对等层之间传递数据时的各种规定。由此可以这样认为:实际通信是按垂直方向进行的,层与层之间经过封装和拆封这样的操作实现物理通信。但是逻辑上,却是在水平方向上利用协议进行的对等层通信。在协议的控制下,对等层的通信使得本层能够向上层提供服务。为了实现本层协议,还需要使用下面一层所提供的服务。如果两个端系统不在同一个网络上,例如它们分别是在路由器连接起来的两个不同的网络上,主机A在以太网上,主机B在令牌环网上,通过一个路由器使这两个网络连接起来。以太网上的任何主机都可以与令牌环网上的任何主机进行通信,如下图所示。
当HTTP发起一个消息请求时,应用层、传输层、网络层和链路层的相关协议依次对该消息请求附加对应的首部,这个首部标明了协议应该如何读取数据,最终在链路层生成以太网数据包,以太网数据包通过物理介质传输到目的主机,目的主机接收到以太网数据包以后,再一层一层采用对应的协议进行拆包,最后把应用层数据交给应用程序处理。简单来说,就是"发送请求时,封包,接收数据时,拆包。"
工作流程
源主机封包:
1、 应用层:源主机将数据向下传输给传输层;
2、 传输层:将数据分组,加上TCP首部形成TCP数据段,向下传输给网络层;
3、 网络层:给TCP数据段加上源主机、目的主机IP首部,生成IP数据包,向下传输给链路层;
4、 链路层:链路层在其MAC帧的数据部分装上IP数据包,再加上源主机,目的主机的MAC地址和帧头,并根据其目的的MAC地址,将MAC帧发往目的主机或IP路由器;
目的主机拆包:
1、 链路层:在目的主机,链路层将MAC帧的帧头去掉,并将IP数据包向上传递给网络层;
2、 网路层:检查IP报头,如果报头中校验和计算结果不一致,则丢弃该IP数据包,若校验和计算结果一致,则去掉IP报头,将TCP数据段向上传递给传输层;
3、 传输层:检查顺序号,判断是否是正确的TCP分组,然后检查TCP报头数据,若正确,则向源主机发送确认信息,若不正确或丢包,则向源主机要求重发信息;
4、 应用层:目的主机,传输层去掉TCP报头,将排好顺序的分组组成应用数据流送给应用程序,这样目的主机接收到的来自源主机的字节流,就像是直接接收来自源主机的字节流一样。
总结
数据在每层有不同的格式,从上到下依次叫数据段,数据包,数据帧,数据从应用层通过协议栈向下传递,每经过一层加上对应层协议报头,最后封装成"数据帧"发送到传输介质上,到达路由器或者目的主机去掉头部,交付给上层需要者。这一过程称为封装,传输,分离,分用。
数据段:TCP 数据流中的信息;
数据包:IP 和 UDP 等网络层以上的分层中包的单位;
数据帧:数据链路层中包的单位;
下面我们通过一张图先来大概了解一下TCP/IP协议的基本框架:
当通过http发起一个请求时,应用层、传输层、网络层和链路层的相关协议依次对该请求进行包装并携带对应的首部,最终在链路层生成以太网数据包,以太网数据包通过物理介质传输给对方主机,对方接收到数据包以后,然后再一层一层采用对应的协议进行拆包,最后把应用层数据交给应用程序处理。
网络通信就好比送快递,商品外面的一层层包裹就是各种协议,协议包含了商品信息、收货地址、收件人、联系方式等,然后还需要配送车、配送站、快递员,商品才能最终到达用户手中。
一般情况下,快递是不能直达的,需要先转发到对应的配送站,然后由配送站再进行派件。
配送车就是物理介质,配送站就是网关, 快递员就是路由器,收货地址就是IP地址,联系方式就是MAC地址。
快递员负责把包裹转发到各个配送站,配送站根据收获地址里的省市区,确认是否需要继续转发到其他配送站,当包裹到达了目标配送站以后,配送站再根据联系方式找到收件人进行派件。
TCP/IP在数据包设计上采用封装和分用的策略,所谓封装就是在应用程序在发送数据的过程中,每一层都增加一些首部信息,这些信息用于和接收端同层次进行沟通,例如当数据从应用程序发送到以太网过程中数据逐层加工的示意图如下所示:
有了整体概念以后,下面我们详细了解一下各层的分工。
应用层做为 TCP/IP 协议的最高层级,对于我们移动开发来说,是接触最多的。
运行在TCP协议上的协议:
HTTP(Hypertext Transfer Protocol,超文本传输协议),主要用于普通浏览。
HTTPS(Hypertext Transfer Protocol over Secure Socket Layer, or HTTP over SSL,安全超文本传输协议),HTTP协议的安全版本。
FTP(File Transfer Protocol,文件传输协议),由名知义,用于文件传输。
POP3(Post Office Protocol, version 3,邮局协议),收邮件用。
SMTP(Simple Mail Transfer Protocol,简单邮件传输协议),用来发送电子邮件。
TELNET(Teletype over the Network,网络电传),通过一个终端(terminal)登陆到网络。
SSH(Secure Shell,用于替代安全性差的TELNET),用于加密安全登陆用。
运行在UDP协议上的协议:
BOOTP(Boot Protocol,启动协议),应用于无盘设备。
NTP(Network Time Protocol,网络时间协议),用于网络同步。
DHCP(Dynamic Host Configuration Protocol,动态主机配置协议),动态配置IP地址。
其他:
DNS(Domain Name Service,域名服务),用于完成地址查找,邮件转发等工作(运行在TCP和UDP协议上)。
ECHO(Echo Protocol,回绕协议),用于查错及测量应答时间(运行在TCP和UDP协议上)。
SNMP(Simple Network Management Protocol,简单网络管理协议),用于网络信息的收集和网络管理。
ARP(Address Resolution Protocol,地址解析协议),用于动态解析以太网硬件的地址。
所以应用层的主要工作就是定义数据格式并按照对应的格式解读数据。
http封装请求数据包以后传给传输层,tcp协议部分开始运作。这里将数据包和TCP报头生成TCP报文,打包成新的数据包。
传输层提供了两种到达目标网络的方式:
(1)用户数据报协议UDP:
只提供了基本的错误检测,是一个无连接的协议。
特点:把数据打包,数据大小有限制(64k),不建立连接,速度快,但可靠性低。
(2)传输控制协议TCP:
提供了完善的错误控制和流量控制,能够确保数据正常传输,是一个面向连接的协议。
特点:建立连接通道,数据大小无限制速度慢,但是可靠性高。由于传输层涉及的东西比较多,比如端口,Socket等。
TCP报文结构(点击查看详情):
我们来分析分析每部分的含义和作用
6位标志位
URG: 标识紧急指针是否有效
ACK: 标识确认序号是否有效
PSH: 用来提示接收端应用程序立刻将数据从tcp缓冲区读走
RST: 要求重新建立连接. 我们把含有RST标识的报文称为复位报文段
SYN: 请求建立连接. 我们把含有SYN标识的报文称为同步报文段
FIN: 通知对端, 本端即将关闭. 我们把含有FIN标识的报文称为结束报文段
16位窗口大小:
在通信之前,会先通过三次握手的机制来确认两端口之间的连接是否可用。而UDP是不需要确认的,直接传
最开始的时候客户端和服务器都是处于CLOSED状态。主动打开连接的为客户端,被动打开连接的是服务器。
某个时刻客户端和服务器要进行通信,此时双方都有备好的端口,服务器的端口会处于监听状态,等待客户端的连接。
怎么知道服务器端口号的?
http在访问url中已经拿到!
怎么知道客户端要连接进来,服务器才进入listen状态?
TCP老早就创建了传输控制块TCB,时刻待命准备接受客户端的连接请求,此时服务器就被动地进入了listen状态。
第一次握手:
客户端想要连接,创建传输控制块TCB,状态变为主动打开。发送给服务器不包含数据内容的连接请求报文。该请求报文首部中同步位SYN=1,同时选择一个初始序列号seq=x(携带了x个字节)。然后客户端进入 SYN-SENT (同步已发送)状态,告诉服务器我想和你同步连接。TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。
第二次握手:
TCP服务器收到连接请求报文,如果同意连接则发送确认报文。为了保证下次客户端发送报文时seq序列号是正确的,需要发送确认号ack=x+1,同时确认号ack要生效必须发送ACK=1,再加上同步位SYN=1,序列号seq=y(携带Y个字节),然后服务器也进 入SYN-RCVD (同步已收到) 状态,完成同步连接。这个报文也是SYN报文,也不能携带数据,但是同样要消耗一个序号。
第三次握手:
客户端收到确认后还要再向服务器发送确认报文。确认报文已经不是请求报文SYN了,不再包含SYN同步位。发送的内容有序列号seq=x+1(和第二次握手的ACK对应),确认号ack=y+1,ACK=1。客户端发送确认报文以后进入ESTABLISHED(已建立)状态,服务器接收到确认报文以后也进入ESTABLISHED状态。此时TCP连接完成建立。
然后就可以发送TCP接收到Http的数据包后生成的新数据包了!
但是貌似看起来两次握手请求就可以完成事,为什么非要三次握手呢?
主要是为了防止已经失效的连接请求报文突然又传到了服务器,从而产生错误。
如果是两次握手,假设一种情景:客户端发送了第一个请求连接报文并未丢失,只是因为网络问题在网络节点中滞留太久了。由于客户端迟迟没有收到确认报文,以为服务器没有收到。于是再发送一条请求连接报文,此时一路畅通完成两次握手建立连接,传输数据,关闭连接。然后那个前一条龟速的请求报文终于走到了服务器,再次和服务器建立连接,这就造成了不必要的资源浪费。
如果是三次握手,就算那一条龟速的请求报文最后到达了服务器,然后服务器也发送了确认连接报文,但是此时客户端已经不会再发出确认报文了,服务器也接受不到确认报文,于是无法建立连接。
数据传输完毕后,双方都可释放连接。最开始的时候,客户端和服务器都是处于ESTABLISHED状态,然后客户端主动关闭,服务器被动关闭。
第一次挥手:
客户端从ESTABLISHED状态变为主动关闭状态,客户端发送请求释放连接报文给服务器,FIN=1,seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。
第二次挥手:
服务器接收到客户端发来的请求释放报文以后,发送确认报文告诉客户端我收到了你的请求,内容差不多就是seq=v,ack=u+1,ACK=1,此时服务器进入CLOSE-WAIT(关闭等待)状态。
为什么是CLOSE-WAIT状态?可能自己服务器这端还有数据没有发送完,所以这个时候整个TCP的连接就变成了半关闭状态。服务器还能发送数据,客户端也能接收数据,但客户端不能再发送数据了,只能发送确认报文。
客户端接收到服务器传来的确认报文以后,进入 FIN-WAIT-1(终止等待2)状态,等待服务器发送连接释放的报文(在这之前,还需要接受服务器没有发送完的最后的数据)。
第三次挥手:
服务器所有的数据都发送完了,认为可以关闭连接了,于是向客户端发送连接释放报文,内容FIN=1,seq=w,ack=u+1(客户端没发送消息,所以提醒客户端下一次还是从u+1开始发送序列),ACK=1。此时服务器进入了 LAST-ACK(最后确认)状态,等待客户端发送确认报文。
第四次挥手:
客户端接收到了服务器发送的连接释放报文,必须发出确认。确认报文seq=u+1,ack=w+1,ACK=1。此时客户端进入 TIME-WAIT (时间等待)状态,但是没有立马关闭。此时TCP连接还没有释放,必须经过2∗∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。
因为这个确认报文可能丢失。服务器收不到确认报文心想这可能是我没传到或者丢失了啊,于是服务器再传一个FIN,然后客户端再重新发送一个确认报文。然后刷新2∗∗MSL时间。直到这个时间内收不到FIN连接释放报文,客户端撤销TCB进入CLOSE状态。
而服务器,在接收到确认报文的时候就立马变为CLOSE状态了。所以服务器结束TCP连接的时间略早于客户端。
万一确认连接以后客户端故障怎么办?
TCP设有一个保活计时器。显然客户端故障时服务器不会智障般等下去,白白浪费资源。服务器每次收到一次客户端的请求以后都会刷新这个保活计时器,时间通常设置为2小时。若2个小时依旧没有收到客户端的任何数据,服务器会发送一个探测报文段,每隔75分钟发一个,如果连发十个都没有数据反应,那么服务器就知道客户端故障了,关闭连接。
链路层定义了主机的身份,即MAC地址, 而网络层定义了IP地址,明确了主机所在的网段,有了这两个地址,数据包就从可以从一个主机发送到另一台主机。但实际上数据包是从一个主机的某个应用程序发出,然后由对方主机的应用程序接收。而每台电脑都有可能同时运行着很多个应用程序,所以当数据包被发送到主机上以后,是无法确定哪个应用程序要接收这个包。
因此传输层引入了UDP协议来解决这个问题,为了给每个应用程序标识身份,UDP协议定义了端口,同一个主机上的每个应用程序都需要指定唯一的端口号,并且规定网络中传输的数据包必须加上端口信息。 这样,当数据包到达主机以后,就可以根据端口号找到对应的应用程序了。UDP定义的数据包就叫做UDP数据包,结构如下所示:
UDP数据包由首部和数据两部分组成,首部长度为8个字节,主要包括源端口和目标端口;数据最大为65527个字节,整个数据包的长度最大可达到65535个字节。
UDP协议比较简单,实现容易,但它没有确认机制, 数据包一旦发出,无法知道对方是否收到,因此可靠性较差,为了解决这个问题,提高网络可靠性,TCP协议就诞生了,TCP即传输控制协议,是一种面向连接的、可靠的、基于字节流的通信协议。简单来说TCP就是有确认机制的UDP协议,每发出一个数据包都要求确认,如果有一个数据包丢失,就收不到确认,发送方就必须重发这个数据包。
为了保证传输的可靠性,TCP 协议在 UDP 基础之上建立了三次对话的确认机制,也就是说,在正式收发数据前,必须和对方建立可靠的连接。由于建立过程较为复杂,我们在这里做一个形象的描述:
主机A:我想发数据给你,可以么?
主机B:可以,你什么时候发?
主机A:我马上发,你接着!
经过三次对话之后,主机A才会向主机B发送正式数据,而UDP是面向非连接的协议,它不与对方建立连接,而是直接就把数据包发过去了。所以 TCP 能够保证数据包在传输过程中不被丢失,但美好的事物必然是要付出代价的,相比 UDP,TCP 实现过程复杂,消耗连接资源多,传输速度慢。
TCP 数据包和 UDP 一样,都是由首部和数据两部分组成,唯一不同的是,TCP 数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常 TCP 数据包的长度不会超过IP数据包的长度,以确保单个 TCP 数据包不必再分割。
总结一下,传输层的主要工作是定义端口,标识应用程序身份,实现端口到端口的通信,TCP协议可以保证数据传输的可靠性。
TCP数据包到了这一层,再加上IP报文生成新的IP数据包
前面有提到网络层主要负责物理地址(mac)和逻辑地址(ip)的转换。
ICMP(Internet Control Message Protocol:互联网控制消息协议):主要负责网络层和传输层的数据交换,是为了更有效地转发IP数据报文和提高数据报文交付成功的机会,是介于传输层和网络层之间的协议。
ARP(Address Resolution Protocol:地址解析协议):主要是将IP地址解析成MAC地址的协议。
RARP(Reverse Address Resolution Protocol:逆地址解析协议):正好相反,是将MAC地址解析成IP地址的协议。
IP协议(Internet Protocol:网际协议):是TCP/IP协议族中最为核心的协议。它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。
报文结构格式(了解更多):
再谈谈IP地址 :
TCP/IP协议网络上每个网络适配器都有一个唯一的ip地址
IP 地址是一个 32 位的地址,这个地址通常分成 4 端,每 8 个二进制为一段,但是为了方便阅读,通常会将每段都转换为十进制来显示,比如大家非常熟悉的 192.168.0.1(本地局域网)
IP地址分为两部分,一部分是网络ID,另一部分是主机ID。但是具体哪一部分是网络D,哪一部分是主机ID并没有明确规定。因为有的网络需要主机很少,因此较短;而有些比较长,因此主机ID较长。
绝大部分 IP 地址属于以下几类
A 类地址:IP 地址的前 8 位代表网络 ID ,后 24 位代表主机 ID
B 类地址:IP 地址的前 16 位代表网络 ID ,后 16 位代表主机 ID
C 类地址:IP 地址的前 24 位代表网络 ID ,后 8 位代表主机 ID
从以下的图中就可以很简单区分IP地址属于哪一类了,比如我的ip地址192.168.0.1就是属于C类
注意:
1.十进制第一段大于 223 的属于 D 类和 E 类地址,这两类比较特殊也不常见,这里就不做详解介绍了。
2.每一类都有一些排除地址,这些地址并不属于该类,他们是在一些特殊情况使用地址
3.除了这样的方式来划分网络,我们还可以把每个网络划分为更小的网络块,称之为子网
所以,网络层的主要工作是定义网络地址,区分网段,子网内MAC寻址,对于不同子网的数据包进行路由。
(更多)
其实这里还可以分为数据链路层和物理层
这一层主要涉及到一些物理传输,比如以太网,无线局域网,电缆等
IP数据包到了这层就不一样了啊!数据链路会在IP数据报的首尾加上首部和尾部代表数据包的结束,封装成帧。首部和尾部都是8位2进制表示,可以一样也可以不一样。
链路:一条点到点的物理线路段,中间没有任何其他的交换结点,通俗的将,就是一根线,其中不经过任何东西,这样的就是链路,一条链路只是一条通路的一个组成部分
数据链路:除了物理线路外,还必须有通信协议来控制这些数据的传输。若把实现这些协议的硬件和软件加到链路上,就构成了数据链路。 通俗讲,就是经过了一些交换机呀,什么的。
最终到达目的地,所有路段就是数据链路,而数据链路中就包含了多段链路。
适配器:也就是网卡,就是用来实现数据链路上一些协议。
帧:数据链路层上传送的就是帧
所以链路层的主要工作就是对电信号进行分组并形成具有特定意义的数据帧,然后以广播的形式通过物理介质发送给接收方
至此,一个请求就完成了由应用层到物理层的传递。在各种交换机中找到最后的服务器地址。然后再把数据封装反着来一遍。再将请求一步步封装传出去,同样的方式由客户端拿到数据,Http协议解析读取显示。
首先我们梳理一下每层模型的职责:
然后再把每层模型的职责串联起来,用一句通俗易懂的话讲就是:
当你输入一个网址并按下回车键的时候,首先,应用层协议对该请求包做了格式定义;紧接着传输层协议加上了双方的端口号,确认了双方通信的应用程序;然后网络协议加上了双方的IP地址,确认了双方的网络位置;最后链路层协议加上了双方的MAC地址,确认了双方的物理位置,同时将数据进行分组,形成数据帧,采用广播方式,通过传输介质发送给对方主机。而对于不同网段,该数据包首先会转发给网关路由器,经过多次转发后,最终被发送到目标主机。目标机接收到数据包后,采用对应的协议,对帧数据进行组装,然后再通过一层一层的协议进行解析,最终被应用层的协议解析并交给服务器处理。
为什么最后客户端还要等待 2*MSL的时间呢?
MSL(Maximum Segment Lifetime),TCP允许不同的实现可以设置不同的MSL值。
第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。
第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。
为什么建立连接是三次握手,关闭连接确是四次挥手呢?
如果已经建立了连接, 但是客户端突发故障了怎么办?
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。