当前位置:   article > 正文

FPGA实现AXI4总线的读写_如何写axi4逻辑

FPGA实现AXI4总线的读写_如何写axi4逻辑

FPGA实现AXI4总线的读写_如何写axi4逻辑

一、AXI4 接口描述

通道

信号

信号描述

全局信号

aclk

主机

全局时钟

aresetn

主机

全局复位,低有效

写通道地址与控制信号通道

M_AXI_WR_awid[3:0]

主机

写地址ID,用来标志一组写信号

M_AXI_WR_awaddr[31:0]

主机

写地址,给出一次写突发传输的写地址

M_AXI_WR_awlen[7:0]

主机

突发长度,给出突发传输的次数

M_AXI_WR_awsize[2:0]

主机

突发大小,给出每次突发传输的字节数

M_AXI_WR_awburst[1:0]

主机

突发类型

M_AXI_WR_awlock

主机

总线锁信号,可提供操作的原子性

M_AXI_WR_awcache[3:0]

主机

内存类型,表明一次传输是怎样通过系统的

M_AXI_WR_awprot[2:0]

主机

保护类型,表明一次传输的特权级及安全等级

M_AXI_WR_awqos[3:0]

主机

质量服务QoS

M_AXI_WR_awvalid

主机

有效信号,表明此通道的地址控制信号有效

M_AXI_WR_awready

从机

表明“从”可以接收地址和对应的控制信号

写通道数据通道

M_AXI_WR_wdata[63:0]

主机

写数据

M_AXI_WR_wstrb[7:0]

主机

写数据有效的字节线,用来表明哪8bits数据是有效的

M_AXI_WR_wlast

主机

表明此次传输是最后一个突发传输

M_AXI_WR_wvalid

主机

写有效,表明此次写有效

M_AXI_WR_wready

从机

表明从机可以接收写数据

写通道响应通道

M_AXI_WR_bid[3:0]

从机

写响应ID TAG

M_AXI_WR_bresp[1:0]

从机

写响应,表明写传输的状态

M_AXI_WR_bvalid

从机

写响应有效

M_AXI_WR_bready

主机

表明主机能够接收写响应

读通道地址与控制信号通道

M_AXI_RD_arid[3:0]

主机

读地址ID,用来标志一组写信号

M_AXI_RD_araddr[31:0]

主机

读地址,给出一次写突发传输的读地址

M_AXI_RD_arlen[7:0]

主机

突发长度,给出突发传输的次数

M_AXI_RD_arsize[2:0]

主机

突发大小,给出每次突发传输的字节数

M_AXI_RD_arburst[1:0]

主机

突发类型

M_AXI_RD_arlock[1:0]

主机

总线锁信号,可提供操作的原子性

M_AXI_RD_arcache[3:0]

主机

内存类型,表明一次传输是怎样通过系统的

M_AXI_RD_arprot[2:0]

主机

保护类型,表明一次传输的特权级及安全等级

M_AXI_RD_arqos[3:0]

主机

质量服务QOS

M_AXI_RD_arvalid

主机

有效信号,表明此通道的地址控制信号有效

M_AXI_RD_arready

从机

表明“从”可以接收地址和对应的控制信号

读通道数据通道

M_AXI_RD_rid[3:0]

从机

读IDtag

M_AXI_RD_rdata[63:0]

从机

读数据

M_AXI_RD_rresp[1:0]

从机

读响应,表明读传输的状态

M_AXI_RD_rlast

从机

表明读突发的最后一次传输

M_AXI_RD_rvalid

从机

表明此通道信号有效

M_AXI_RD_rready

主机

表明主机能够接收读数据和响应信息

二、地址通道的控制信号与地址描述

1、地址ID

AWID[3:0]与ARID[3:0]:对于只有一个主机从机设备,该值可设置为任意

2、地址结构

AWADDR[31:0]与ARADDR[31:0]:AXI协议是基于burst(突发)的,主机只给出突发传输的第一个字节的地址,从机必须计算突发传输后续的地址。突发传输不能跨4KB边界(防止突发跨越两个从机的边界,也限制了从机所需支持的地址自增数

3、突发长度

AWLEN[7:0]与ARLEN[7:0]:ARLEN[7:0]决定读传输的突发长度,AWLEN[7:0]决定写传输的突发长度。AXI4扩展突发长度支持INCR突发类型为1256次传输,对于其他的传输类型依然保持116次突发传输(Burst_Length=AxLEN[7:0]+1)

4、突发大小

ARSIZE[2:0],读突发传输;AWSIZE[2:0],写突发传输。

AxSIZE[2:0]

传输字节大小

3'b000

1

3'b001

2

3'b010

4

3'b011

8

3'b100

16

3'b101

32

3'b110

64

3'b111

128

5、突发类型

AWBURST[1:0]与ARBURST[1:0]:

AxBURST[1:0]

突发类型

2'b00

FIXED

2'b01

INCR

2'b10

WRAP

2'b11

Reserved

FIXED:突发传输过程中地址固定,用于FIFO访问

INCR:增量突发,传输过程中,地址递增。增加量取决AxSIZE的值

WRAP:回环突发,和增量突发类似,但会在特定高地址的边界处回到低地址处。回环突发的长度只能是2,4,8,16次传输,传输首地址和每次传输的大小对齐。最低的地址整个传输的数据大小对齐。回环边界等于(AxSIZE*AxLEN)

三、数据通道信号描述

1、WDATA与RDATA:写与读数据线信号

WSTRB:有效字节,WSTRB[n:0]对应于对应的写字节,WSTRB[n]对应WDATA[8n+7:8n],也就是对于的数据宽度的字节数是否有效。WVALID为低时,WSTRB可以为任意值,WVALID为高时,WSTRB为高的字节线必须指示有效的数据。对于一般应用,将WSTRB全部置1即可,保证全部数据有效。读通道无该信号。

2、WLAST与RLAST

写与读最后一个字节,拉高表示传输最后一个字节,也意味着传输结束

3、burst[1:0]

描述读写相应结构

burst[1:0]

00

常规访问成功

01

独占访问成功

10

从机错误

11

解码错误

四、突发写时序:

AXI4突发写可以分为7个状态,写空闲,写通道写地址等待,写通道写地址,写数据等待,写数据循环,接受写应答,写结束这7种状态。之所以划分为7个状态是为了后续写程序的状态机做准备。

7种状态

1、写空闲:等待触发突发信号

2、写通道写地址等待:准备好写地址AWADDR,然后拉高AWVALID。

3、写通道写地址:从机接受到AWVALID,发出AWREADY。

4、写数据等待:准备好数据WDATA,拉高WVALID。

5、写数据循环:从机接受WVALID,确认数据WDATA有效并且接受,发出WREADY,AXI是突发传输:循环该操作到接受到WLAST最后一个数据标志位。

6、接受写应答:接受到从机发出的BVALID,主机发出BREADY。

7、写结束:拉低未拉低的信号,进入写空闲

五、突发读时序

AXI4突发读可以分为6个状态,读空闲,读通道写地址等待,读通道写地址,读数据等待,读数据循环,读结束这6种状态。之所以划分为6个状态是为了后续写程序的状态机做准备。

6种状态

1、读空闲:等待触发突发信号。

2、读通道写地址等待:准备好写地址ARADDR,然后拉高ARVALID。

3、读通道写地址:从机接受到ARVALID,发出ARREADY。

4、读数据等待:从机准备好数据WDATA,从机拉高RVALID。

5、读数据循环:主机接受RVALID,确认数据RDATA有效并且接受,发出RREADY给从机,AXI是突发传输:循环该操作到接受到RLAST最后一个数据标志位

6、读结束:拉低未拉低的信号,进入读空闲

注:

1、读数据必须总是跟在与其数据相关联的地址之后。

2、写响应必须总是跟在与其相关联的写事务的最后出现。

六、写时序状态机

七、写时序代码

module axi4_write(
    input               clk             ,
    input               resetn          ,
    input               enable_write    ,  //写使能
    input  [31:0]       w_addr          ,  //地址
    input  [63:0]       w_data          ,  //数据
    output reg          write_done      ,  //写完成
    output reg          write_data      ,  //表示数据写入,突发模式下可用于切换数据的指示信号
    //axi4写通道地址通道
    output  [3:0]       m_axi_awid      , //写地址ID,用来标志一组写信号
    output reg[31:0]    m_axi_awaddr    ,//写地址,给出一次写突发传输的写地址 
    output [7:0]        m_axi_awlen     , //突发长度,给出突发传输的次数 
    output [2:0]        m_axi_awsize    , //突发大小,给出每次突发传输的字节数 
    output [1:0]        m_axi_awburst   , //突发类型 
    output              m_axi_awlock    , //总线锁信号,可提供操作的原子性 
    output [3:0]        m_axi_awcache   , //内存类型,表明一次传输是怎样通过系统的
    output [2:0]        m_axi_awprot    , //保护类型,表明一次传输的特权级及安全等级 
    output [3:0]        m_axi_awqos     , //质量服务QoS
    output reg          m_axi_awvalid   , //有效信号,表明此通道的地址控制信号有效 
    input               m_axi_awready   , //表明“从”可以接收地址和对应的控制信号
    //axi4写通道数据通道
    output reg[63:0]    m_axi_wdata     , //写数据 
    output [7:0]        m_axi_wstrb     , //写数据有效的字节线 
    output reg          m_axi_wlast     , //表明此次传输是最后一个突发传输
    output reg          m_axi_wvalid    , //写有效,表明此次写有效
    input               m_axi_wready    , //表明从机可以接收写数据 
    //axi4写通道应答通道 
    input [3:0]         m_axi_bid       , //写响应ID TAG
    input [1:0]         m_axi_bresp     , //写响应,表明写传输的状态
    input               m_axi_bvalid    , //写响应有效
    output reg          m_axi_bready      //表明主机能够接收写响应
    );

//*******************参数*****************************
    localparam  W_IDLEW     = 3'b001    ; //空闲等待
    localparam  W_DRIVEW    = 3'b011    ; //准备、取地址
    localparam  W_HANDS     = 3'b010    ; //握手
    localparam  W_WSTBR     = 3'b110    ; //突发
    localparam  W_WAIT      = 3'b111    ; //等待结束的信息
    localparam  W_END       = 3'b101    ; //写数据阶段

    parameter   LEN_NUM     = 1         ;
    parameter   AWID        = 0         ;
//*********内部信号******************************
    reg  [2:0]  state ,   next_state   ;
    reg         wready_over            ;
    reg  [7:0]  len                    ;

    assign  m_axi_awid    = AWID[3:0] ;    // [3:0]  //写地址ID,用来标志一组写信号  
    assign  m_axi_awlen   = LEN_NUM-1 ;    // [7:0]  //突发长度,给出突发传输的次数  
    assign  m_axi_awsize  = 3'b011    ;    // [2:0]  //突发大小,给出每次突发传输的字节数  
    assign  m_axi_awburst = 2'b10     ;    // [1:0]  //突发类型  
    assign  m_axi_awlock  = 1'b0      ;    //        //总线锁信号,可提供操作的原子性  
    assign  m_axi_awcache = 4'b0010   ;    // [3:0]  //内存类型,表明一次传输是怎样通过系统的 
    assign  m_axi_awprot  = 3'b000    ;    // [2:0]  //保护类型,表明一次传输的特权级及安全等级 
    assign  m_axi_awqos   = 4'b0000   ;    // [3:0]  //质量服务QoS 
    assign  m_axi_wstrb   = 8'hff     ;

//状态机
    always @(*) begin
        state   =   next_state    ;
    end    


    always @(posedge clk or negedge resetn) begin
        if(!resetn) begin
            wready_over<=0;
        end
        else if(state==W_IDLEW || state==W_END )
            wready_over<=0;
        else if(m_axi_wready)
            wready_over<=1;
    end
   
    always @(posedge clk or negedge resetn) begin
        if(!resetn) begin
            next_state  <=  W_IDLEW   ;
            len <=0 ;
        end
        else case(state)
                W_IDLEW :   if(enable_write) next_state <= W_DRIVEW  ;  else next_state<=W_IDLEW    ;
                W_DRIVEW:   if(m_axi_awready) begin
                                next_state <= W_HANDS ; 
                                len<=LEN_NUM-1          ; 
                            end 
                            else next_state<=W_DRIVEW   ;
                W_HANDS :   if(wready_over && len==0)
                                next_state <= W_WAIT ;  
                            else   if(wready_over ) next_state <= W_WSTBR   ;
                            else next_state<=W_HANDS  ;
                W_WSTBR :   if(len==1)       next_state <= W_WAIT ;  
                            else begin 
                                next_state <= W_WSTBR ;
                                len <=len-1           ;
                            end
                W_WAIT  :   next_state<=W_END ;  
                W_END   :   if(m_axi_bvalid)next_state <= W_IDLEW  ;  else next_state<=W_END    ;
                default :   next_state<=W_IDLEW ;
        endcase   
    end
  // 组合逻辑输出
    always @(* ) begin
        case(state)
            W_IDLEW :   begin
                            m_axi_wlast    =   0        ;
                            m_axi_awaddr   =   0        ;
                            m_axi_awvalid  =   0        ;
                            m_axi_wdata    =   0        ;
                            m_axi_wvalid   =   0        ;
                            m_axi_bready   =   0        ;
                            write_done     =   0        ;
                            write_data     =   0        ;
                    end
            W_DRIVEW:   begin
                            m_axi_wlast    =   0       ;
                            m_axi_awaddr   =   w_addr  ;
                            m_axi_awvalid  =   1       ;
                            m_axi_wdata    =   0       ;
                            m_axi_wvalid   =   0       ;
                            m_axi_bready   =   0       ;
                            write_done     =   0       ;
                            write_data     =   0       ;
                    end
            W_HANDS :   begin
                            m_axi_wlast    =   0       ;
                            m_axi_awaddr   =   0       ;
                            m_axi_awvalid  =   0       ;
                            m_axi_wdata    =   0       ;
                            m_axi_wvalid   =   0       ;
                            m_axi_bready   =   0       ;
                            write_done     =   0       ;
                            write_data     =   0       ;
                    end
            W_WSTBR :   begin
                            m_axi_wlast    =   0       ;
                            m_axi_awaddr   =   0       ;
                            m_axi_awvalid  =   0       ;
                            m_axi_wdata    =   w_data  ;
                            m_axi_wvalid   =   1       ;
                            m_axi_bready   =   0       ;
                            write_done     =   0       ;
                            write_data     =   1       ;
                    end
            W_WAIT  :   begin
                            m_axi_wlast    =   1       ;
                            m_axi_awaddr   =   0       ;
                            m_axi_awvalid  =   0       ;
                            m_axi_wdata    =   w_data  ;
                            m_axi_wvalid   =   1       ;
                            m_axi_bready   =   0       ;
                            write_done     =   1       ;
                            write_data     =   1       ;
                    end
           
            W_END   :   begin
                            m_axi_wlast    =   0       ;
                            m_axi_awaddr   =   0       ;
                            m_axi_awvalid  =   0       ;
                            m_axi_wdata    =   0       ;
                            m_axi_wvalid   =   0       ;
                            m_axi_bready   =   1       ;
                            write_done     =   0       ;
                            write_data     =   0       ;
                    end
            default :   begin
                            m_axi_wlast    =   0   ;
                            m_axi_awaddr   =   0   ;
                            m_axi_awvalid  =   0   ;
                            m_axi_wdata    =   0   ;
                            m_axi_wvalid   =   0   ;
                            m_axi_bready   =   0   ;
                            write_done     =   0   ;
                            write_data     =   0   ;
                    end
        endcase
    end
endmodule
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177

八、读时序状态机

九、读时序代码

module axi4_read(
    input               resetn          ,//axi复位 
    input               clk             ,  //axi时钟 
    input               enable_read     ,
    output              read_data       ,
    output              read_done       ,
    input       [31:0]  r_addr          ,
    output  reg [63:0]  r_data          ,
    //axi读通道写地址 
     output     [3:0]   m_axi_arid      , //读地址ID,用来标志一组写信号
     output reg [31:0]  m_axi_araddr    , //读地址,给出一次写突发传输的读地址
     output     [7:0]   m_axi_arlen     , //突发长度,给出突发传输的次数
     output     [2:0]   m_axi_arsize    , //突发大小,给出每次突发传输的字节数
     output     [1:0]   m_axi_arburst   , //突发类型
     output     [1:0]   m_axi_arlock    , //总线锁信号,可提供操作的原子性
     output     [3:0]   m_axi_arcache   , //内存类型,表明一次传输是怎样通过系统的 
     output     [2:0]   m_axi_arprot    , //保护类型,表明一次传输的特权级及安全等级
     output     [3:0]   m_axi_arqos     , //质量服务QOS 
     output reg         m_axi_arvalid   , //有效信号,表明此通道的地址控制信号有效 
     input              m_axi_arready   , //表明“从”可以接收地址和对应的控制信号
     //axi读通道读数据 
     input      [3:0]   m_axi_rid       , //读ID tag 
     input      [63:0]  m_axi_rdata     , //读数据 
     input      [1:0]   m_axi_rresp     , //读响应,表明读传输的状态
     input              m_axi_rlast     , //表明读突发的最后一次传输
     input              m_axi_rvalid    , //表明此通道信号有效 
     output reg         m_axi_rready      //表明主机能够接收读数据和响应信息
    
    );
//
    localparam [2:0] R_IDLER      =  3'b001   ;
    localparam [2:0] R_WAIT       =  3'b011   ;
    localparam [2:0] R_BURST      =  3'b010   ;
    localparam [2:0] R_END        =  3'b110   ;

    parameter  ARID   = 0    ;
    parameter  RD_LEN = 1    ;
//
    reg [2:0] state , next_state    ;
    reg          rvalid_over    ;
//    
    assign m_axi_arid      = ARID[3:0]      ;//地址id 
    assign m_axi_arlen     = RD_LEN-32'd1   ;//突发长度
    assign m_axi_arsize    = 3'b011         ;//表示AXI总线每个数据宽度是8字节,64位 
    assign m_axi_arburst   = 2'b01          ;//地址递增方式传输
    assign m_axi_arlock    = 1'b0           ;
    assign m_axi_arcache   = 4'b0010        ; 
    assign m_axi_arprot    = 3'b000         ;
    assign m_axi_arqos     = 4'b0000        ;

    assign read_data       =  m_axi_rvalid  ;
    assign read_done       = m_axi_rlast    ;
//axi读状态机
    always @(*) begin
        state   =   next_state  ;
    end
    //
    always @(posedge clk  or negedge resetn) begin
        if(!resetn) begin
            rvalid_over <=0  ;
        end 
        else if(state==R_IDLER) begin
            rvalid_over <=0  ;
        end
        else if(m_axi_rvalid)begin
            rvalid_over <= 1 ;
        end
    end

    always @(posedge clk or negedge resetn) begin
        if(!resetn)
            next_state <= R_IDLER;
        else    case(state)
                    R_IDLER  :  if(enable_read) next_state <= R_WAIT ;else next_state<=R_IDLER   ; 
                    R_WAIT   :  if(m_axi_arready) next_state<=R_BURST  ;else next_state<=R_WAIT  ;  
                    R_BURST  :  if(m_axi_rlast)  next_state<=R_END    ;else next_state  <=  R_BURST ;
                    R_END    :  if(rvalid_over) next_state<=R_IDLER;else next_state<=R_END ;  
                    default  :  next_state<=R_IDLER ;
        endcase
    end
    //
    always @(*) begin
        case(state)
            R_IDLER  :  begin
                            m_axi_araddr  = 0       ;  
                            m_axi_arvalid = 0       ;  
                            m_axi_rready  = 0       ;  
                            r_data        = 0       ;  
                        end 
            R_WAIT   :  begin
                            m_axi_araddr  = r_addr      ;  
                            m_axi_arvalid = 1           ;  
                            m_axi_rready  = 0           ;  
                            r_data        = 0           ;    
                        end             
            R_BURST  :  begin
                            m_axi_araddr  = 0           ;  
                            m_axi_arvalid = 0           ;  
                            m_axi_rready  = 1           ;  
                            r_data        = m_axi_rdata ;      
                        end   
            R_END    :  begin
                            m_axi_araddr  = 0           ;  
                            m_axi_arvalid = 0           ;  
                            m_axi_rready  = 1           ;  
                            r_data        = 0           ;     
                        end 
            default  :  begin
                            m_axi_araddr  = 0           ;  
                            m_axi_arvalid = 0           ;  
                            m_axi_rready  = 0           ;  
                            r_data        = 0           ;     
                        end 
        endcase
    end

endmodule
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/490744
推荐阅读
相关标签
  

闽ICP备14008679号