当前位置:   article > 正文

Python实现逻辑回归实战(完整版)--内附详细代码_python逻辑回归分类实战

python逻辑回归分类实战

Hello大家!上一篇小A已经详细的为大家讲解了逻辑回归的原理和数学推导,但是对于学习人工智能来说仅仅学会原理是远远不够的,还必须要动手实践,必须要学会使用编程语言将算法实现。所以,今天我就来为大家展示一下使用python进行逻辑回归的实现。

在实现之前,先来解答一下大家对于上一篇的问题

1. 

有人疑惑这里第四行为什么是根据sigmod求导公式进行推导,明明是hw函数。

上一篇我们看到hw函数的形式:

而我们看到sigmod函数形式可以变换为:

与hw函数形式一样,所以可以根据sigmod函数进行变换。

2. 逻辑回归的目标函数为什么是凸函数

我们知道凹凸函数的判别方法如下所示:

而逻辑回归目标函数的一阶偏导如下所示:

注意这里L(w)是逻辑回归的目标函数,非损失函数,所以式子前面没有负号。

我们来求逻辑回归目标函数的二阶偏导:

由此可得逻辑回归目标函数是凸函数。

以上是上一篇文章在发出后,一些读者发来的问题,已做详细解答。接下来让我们来使用python编程语言来对逻辑回归进行实现。

1. 首先加载数据

我们首先看一下数据格式:

-0.017612   14.053064   0
-1.395634   4.662541    1
-0.752157   6.538620    0
-1.322371   7.152853    0
0.423363    11.054677   0
0.406704    7.067335    1
0.667394    12.741452   0
-2.460150   6.866805    1
0.569411    9.548755    0
-0.026632   10.427743   0

前两列是属性列,也是我们需要输入的数据,最后一列是分类label。

接下来加载数据:

注意data.append([1.0,float(lineArray[0]),float(lineArray[1])])这里的1.0是w^T+b中b前面的系数1。是为了方便后面的权重矩阵与输入数据X相乘而设置。(1*b+w1*x1+w2*x2...+wn*xn)

这里的label是标签

2.定义sigmod函数

3. 定义梯度

我们的目的是为了使得目标函数最大,这里对目标函数求偏导即为梯度等于:

所以代码可表示为:

这里h代表hw,q代表梯度,dataMatrix代表xi。

4. 目标函数为凸函数,梯度上升法求解未知数w和b(b已被w吸收进矩阵,统一求w)

这里把权重(w0,w1,w2...wn)统一初始化为一,当梯度接近于0时,目标函数到达极点,此时weight即为我们要求的值。

5. 最后画出图形

完整代码如下:

#-*- coding:UTF-8 -*-
from numpy import *
filename='logistic_text.txt'
def loadDataSet():
   data = []
   label = []
   fr = open(filename)
   for line in fr.readlines():
       lineArray = line.strip().split()
      data.append([1.0, float(lineArray[0]), float(lineArray[1])])   2*X1+W3*X2
       label.append(int(lineArray[2]))
   return data,label

def sigmoid(X):
   return 1.0/(1+exp(-X))

alpha = 0.001  

def gradient(weights,data,label):
   dataMatrix = mat(data)  
   classLabels = mat(label).transpose()  
   h = sigmoid(dataMatrix * weights)
   error = (classLabels - h)
   q = -dataMatrix.transpose() * error
   return q

def gradient_Accent(data, label): 
   m, n = shape(data)
   weights = ones((n, 1))
   q=gradient(weights,data,label)
   while not all(absolute(q) <= 2e-5):
       weights = weights - alpha * q
       q = gradient(weights,data, label)
   return weights


def plotBestFit(weights):  #画出最终分类的图
   import matplotlib.pyplot as plt
   dataMat,labelMat=loadDataSet()
   dataArr = array(dataMat)
   n = shape(dataArr)[0]
   xcord1 = []; ycord1 = []
   xcord2 = []; ycord2 = []
   for i in range(n):
       if int(labelMat[i])== 1:
           xcord1.append(dataArr[i,1])
           ycord1.append(dataArr[i,2])
       else:
           xcord2.append(dataArr[i,1])
           ycord2.append(dataArr[i,2])
   fig = plt.figure()
   ax = fig.add_subplot(111)
   ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
   ax.scatter(xcord2, ycord2, s=30, c='green')
   x = arange(-3.0, 3.0, 0.1)
   y = (-weights[0]-weights[1]*x)/weights[2]
   ax.plot(x, y)
   plt.xlabel('X1')
   plt.ylabel('X2')
   plt.show()

def main():
   dataMat, labelMat = loadDataSet()
   weights=gradient_Accent(dataMat, labelMat).getA()
   plotBestFit(weights)

if __name__=='__main__':
   main()

使用的数据如下所示,读者将其存储为txt文件即可使用:

-0.017612   14.053064   0
-1.395634   4.662541    1
-0.752157   6.538620    0
-1.322371   7.152853    0
0.423363    11.054677   0
0.406704    7.067335    1
0.667394    12.741452   0
-2.460150   6.866805    1
0.569411    9.548755    0
-0.026632   10.427743   0
0.850433    6.920334    1
1.347183    13.175500   0
1.176813    3.167020    1
-1.781871   9.097953    0
-0.566606   5.749003    1
0.931635    1.589505    1
-0.024205   6.151823    1
-0.036453   2.690988    1
-0.196949   0.444165    1
1.014459    5.754399    1
1.985298    3.230619    1
-1.693453   -0.557540   1
-0.576525   11.778922   0
-0.346811   -1.678730   1
-2.124484   2.672471    1
1.217916    9.597015    0
-0.733928   9.098687    0
-3.642001   -1.618087   1
0.315985    3.523953    1
1.416614    9.619232    0
-0.386323   3.989286    1
0.556921    8.294984    1
1.224863    11.587360   0
-1.347803   -2.406051   1
1.196604    4.951851    1
0.275221    9.543647    0
0.470575    9.332488    0
-1.889567   9.542662    0
-1.527893   12.150579   0
-1.185247   11.309318   0
-0.445678   3.297303    1
1.042222    6.105155    1
-0.618787   10.320986   0
1.152083    0.548467    1
0.828534    2.676045    1
-1.237728   10.549033   0
-0.683565   -2.166125   1
0.229456    5.921938    1
-0.959885   11.555336   0
0.492911    10.993324   0
0.184992    8.721488    0
-0.355715   10.325976   0
-0.397822   8.058397    0
0.824839    13.730343   0
1.507278    5.027866    1
0.099671    6.835839    1
-0.344008   10.717485   0
1.785928    7.718645    1
-0.918801   11.560217   0
-0.364009   4.747300    1
-0.841722   4.119083    1
0.490426    1.960539    1
-0.007194   9.075792    0
0.356107    12.447863   0
0.342578    12.281162   0
-0.810823   -1.466018   1
2.530777    6.476801    1
1.296683    11.607559   0
0.475487    12.040035   0
-0.783277   11.009725   0
0.074798    11.023650   0
-1.337472   0.468339    1
-0.102781   13.763651   0
-0.147324   2.874846    1
0.518389    9.887035    0
1.015399    7.571882    0
-1.658086   -0.027255   1
1.319944    2.171228    1
2.056216    5.019981    1
-0.851633   4.375691    1
-1.510047   6.061992    0
-1.076637   -3.181888   1
1.821096    10.283990   0
3.010150    8.401766    1
-1.099458   1.688274    1
-0.834872   -1.733869   1
-0.846637   3.849075    1
1.400102    12.628781   0
1.752842    5.468166    1
0.078557    0.059736    1
0.089392    -0.715300   1
1.825662    12.693808   0
0.197445    9.744638    0
0.126117    0.922311    1
-0.679797   1.220530    1
0.677983    2.556666    1
0.761349    10.693862   0
-2.168791   0.143632    1
1.388610    9.341997    0
0.317029    14.739025   0

另外python中sklearn封装有 LogisticRegression,直接调用即可:

logr = LogisticRegression()
logr.fit(X_train,y_train)
print("准确度:",logr.score(X_test,y_test))

以上即为python对逻辑回归的实现,你学会了吗?

如下是本人学习公众号,会经常分享人工智能学习总结或者分享学习资料资源,欢迎大家关注,我们一起交流学习~ 

​​​​​​​

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/532623
推荐阅读
相关标签
  

闽ICP备14008679号