赞
踩
LeNet5的结构比较简单,分类准确率只有50%左右。
ResNet属于中等规模复杂度的网络,性能比LeNet5会强大不少。
本例采用最简单的ResNet18模型,实现对CIFAR数据集的10分类。
还是按照之前的流程,分四步完成网络的搭建和训练。
编程过程中发现最好还是使用模块化编程,不然容易写bug出来。
代码如下:
import torch from torch import nn from torch.utils.data import DataLoader from torchvision import datasets from torchvision import transforms import torch.optim as optim from torch.nn import functional as F import matplotlib.pyplot as plt import time # # 使用ResNet18网络训练CIFAR10数据集实现10分类 start = time.time() # Step 1 : prepare dataset batch_size = 32 cifar_train = datasets.CIFAR10("cifar", train=True, transform=transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), download=True) # 导入训练数据集 添加三个变换 第一个将图片裁剪至32*32大小;第二个将格式转变成tensor;第三个使用均值归一化,使数据均匀分布在0-1之间 cifar_train_loader = DataLoader(cifar_train, batch_size=batch_size, shuffle=True,) # 做打乱处理 cifar_test = datasets.CIFAR10("cifar", train=False, transform=transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]), download=True) cifar_test_loader = DataLoader(cifar_test, batch_size=batch_size, shuffle=False, ) # 与上面相同,但测试集不需要打乱 # Step2: design model # 先定义Res模块 res模块是残差神经网络中的残差运算单元 class ResBlock(nn.Module): # 同样继承至nn.Module def __init__(self, ch_in, ch_out, stride=1): super(ResBlock, self).__init__() self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1) # stride对图片尺寸的大小有重要的影响 self.bn1 = nn.BatchNorm2d(ch_out) self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(ch_out) # 两个卷积层 两个batchnorm # shortcut 短接层 self.extra = nn.Sequential() if ch_out != ch_in: # let [b, ch_in, h, w] ----> [b, ch_out, h, w] self.extra = nn.Sequential( nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=stride), # 此处的stride设置与conv1一样 保证大小一致 可以相加 nn.BatchNorm2d(ch_out) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) # extra shortcut out = self.extra(x) + out out = F.relu(out) return out # 再定义ResNet类 class ResNet(nn.Module): def __init__(self): super(ResNet, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=3, padding=0), nn.BatchNorm2d(64) ) # follow 4 block self.resblock = nn.Sequential( ResBlock(64, 128, stride=2), ResBlock(128, 256, stride=2), ResBlock(256, 512, stride=2), ResBlock(512, 512, stride=2), # 512是经验之谈 一般channel提升到512 同时图片尺寸需要减少 ) self.outlayer = nn.Linear(512, 10) # 总的结构为:1个卷积[b, 3, 32, 32]-->[b, 64, 32, 32]+4个残差块[b, 64, 32, 32]-->[b, 512, 2, 2]+1个全连接层[b, 512]-->[b, 10] # 4个残差块后还有一个全局池化的操作,实现[b, 512, 2, 2]-->[b, 512, 1, 1],并[b, 512, 1, 1]-->[b, 512*1*1] def forward(self, x): x = F.relu(self.conv1(x)) # [b, 64, h, w] ----> [b, 512, h, w] x = self.resblock(x) # print("after conv: ", x.shape) # [b, 512, 2, 2] x = F.adaptive_max_pool2d(x, [1, 1]) # [b, 512, h, w] ---> [b, 512, 1, 1] 不管w,h是多少,都变成1*1的(均值) # print("after pool: ", x.shape) # flatten to 1 dim x = x.view(x.size(0), -1) x = self.outlayer(x) return x model = ResNet() print(model) # 打印模型结构 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # 放到GPU上 # Step3: construct Loss and Optimizer criterion = torch.nn.CrossEntropyLoss() # 分类一般使用交叉熵 optimizer = optim.Adam(model.parameters(), lr=0.001) # Step4: Train and Test def train(epoch): running_loss = 0 model.train() # 设置为train模式 for batch_idx, (x, label) in enumerate(cifar_train_loader, 0): x, label = x.to(device), label.to(device) optimizer.zero_grad() # forward outputs = model(x) loss = criterion(outputs, label) # backward loss.backward() # update optimizer.step() print("Epoch: ", epoch, "Loss is: ", loss.item()) def test(epoch): correct = 0 total = 0 model.eval() # 设置为test模式 with torch.no_grad(): # 以下内容不需要构建计算图,不需要计算梯度 这一句可加可不加 for data in cifar_test_loader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = model(images) pred = outputs.argmax(dim=1) total += labels.size(0) # 每次循环都把这一批的batch_size加上,就得到总的数量 correct += torch.eq(pred, labels).float().sum().item() # 对比预测和label相同的数量 即为预测正确的数量 print("Epoch", epoch, "Accuracy on test set: %d %%" % (100 * correct / total)) return correct / total if __name__ == "__main__": epoch_list = [] acc_list = [] for epoch in range(50): train(epoch) acc = test(epoch) epoch_list.append(epoch) acc_list.append(acc) plt.plot(epoch_list, acc_list) plt.xlabel("Epoch") plt.ylabel("Acc") plt.grid() plt.show() end = time.time() print("Total Time: ", end - start)
结果如图:
可以看出准确率大约在72%左右,相比LeNet5上升了20多个百分点。
训练50轮,总时间为2303秒。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。