赞
踩
在bl2中通过调用smc指令后会跳转到bl31中进行执行,bl31最终主要的作用是建立EL3 runtime software,在该阶段会建立各种类型的smc调用注册并完成对应的cortex状态切换。该阶段主要执行在monitor中。
通过bl31.ld.S文件可知, bl31的入口函数是:bl31_entrypoint函数,该函数的内容如下:
- func bl31_entrypoint
- #if !RESET_TO_BL31
- /* ---------------------------------------------------------------
- * Preceding bootloader has populated x0 with a pointer to a
- * 'bl31_params' structure & x1 with a pointer to platform
- * specific structure
- * ---------------------------------------------------------------
- */
- mov x20, x0
- mov x21, x1
-
- /* ---------------------------------------------------------------------
- * For !RESET_TO_BL31 systems, only the primary CPU ever reaches
- * bl31_entrypoint() during the cold boot flow, so the cold/warm boot
- * and primary/secondary CPU logic should not be executed in this case.
- *
- * Also, assume that the previous bootloader has already set up the CPU
- * endianness and has initialised the memory.
- * ---------------------------------------------------------------------
- */
- /* el3初始化操作,该el3_entrypoint_common函数在上面已经介绍过,其中runtime_exceptions为el3 runtime software的异常向量表,内容定义在bl31/aarch64/runtime_exceptions.S文件中 */
- el3_entrypoint_common \
- _set_endian=0 \
- _warm_boot_mailbox=0 \
- _secondary_cold_boot=0 \
- _init_memory=0 \
- _init_c_runtime=1 \
- _exception_vectors=runtime_exceptions
-
- /* ---------------------------------------------------------------------
- * Relay the previous bootloader's arguments to the platform layer
- * ---------------------------------------------------------------------
- */
- mov x0, x20
- mov x1, x21
- #else
- /* ---------------------------------------------------------------------
- * For RESET_TO_BL31 systems which have a programmable reset address,
- * bl31_entrypoint() is executed only on the cold boot path so we can
- * skip the warm boot mailbox mechanism.
- * ---------------------------------------------------------------------
- */
- el3_entrypoint_common \
- _set_endian=1 \
- _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
- _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
- _init_memory=1 \
- _init_c_runtime=1 \
- _exception_vectors=runtime_exceptions
-
- /* ---------------------------------------------------------------------
- * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
- * there's no argument to relay from a previous bootloader. Zero the
- * arguments passed to the platform layer to reflect that.
- * ---------------------------------------------------------------------
- */
- mov x0, 0
- mov x1, 0
- #endif /* RESET_TO_BL31 */
-
- /* ---------------------------------------------
- * Perform platform specific early arch. setup
- * ---------------------------------------------
- */
- /* 平台架构相关的初始化设置 */
- bl bl31_early_platform_setup
- bl bl31_plat_arch_setup
-
- /* ---------------------------------------------
- * Jump to main function.
- * ---------------------------------------------
- */
- bl bl31_main //跳转到bl31_main函数,执行该阶段需要的主要操作
-
- /* -------------------------------------------------------------
- * Clean the .data & .bss sections to main memory. This ensures
- * that any global data which was initialised by the primary CPU
- * is visible to secondary CPUs before they enable their data
- * caches and participate in coherency.
- * -------------------------------------------------------------
- */
- adr x0, __DATA_START__
- adr x1, __DATA_END__
- sub x1, x1, x0
- bl clean_dcache_range
-
- adr x0, __BSS_START__
- adr x1, __BSS_END__
- sub x1, x1, x0
- bl clean_dcache_range
-
- b el3_exit //执行完成将跳转到bl33中执行,即执行bootloader
- endfunc bl31_entrypoint
//执行完成将跳转到bl33中执行,即执行bootloader
endfunc bl31_entrypoint
该函数主要完成必要初始化操作,配置EL3中的各种smc操作,以便在后续顺利响应在CA和TA中产生的smc操作
- void bl31_main(void)
- {
- NOTICE("BL31: %s\n", version_string);
- NOTICE("BL31: %s\n", build_message);
-
- /* Perform platform setup in BL31 */
- bl31_platform_setup(); //初始化相关驱动,时钟等
-
- /* Initialise helper libraries */
- bl31_lib_init(); //用于执行bl31软件中相关全局变量的初始化
-
- /* Initialize the runtime services e.g. psci. */
- INFO("BL31: Initializing runtime services\n");
- runtime_svc_init(); //初始化el3中的service,通过在编译时指定特定的section来确定哪些service会被作为el3 service
-
- /*
- * All the cold boot actions on the primary cpu are done. We now need to
- * decide which is the next image (BL32 or BL33) and how to execute it.
- * If the SPD runtime service is present, it would want to pass control
- * to BL32 first in S-EL1. In that case, SPD would have registered a
- * function to intialize bl32 where it takes responsibility of entering
- * S-EL1 and returning control back to bl31_main. Once this is done we
- * can prepare entry into BL33 as normal.
- */
-
- /*
- * If SPD had registerd an init hook, invoke it.
- */
- /* 如果注册了TEE OS支持,在调用完成run_service_init之后会使用TEE OS的入口函数初始化bl32_init变量,然后执行对应的Init函数,以OP-TEE为例,bl32_init将会被初始化成opteed_init,到此将会执行 opteed_init函数来进入OP-TEE OS的Image,当OP-TEE image OS执行完了image后,将会产生一个TEESMC_OPTEED_RETURN_ENTRY_DONE的smc来通过bl31已经完成了OP-TEE的初始化*/
- if (bl32_init) {
- INFO("BL31: Initializing BL32\n");
- (*bl32_init)();
- }
- /*
- * We are ready to enter the next EL. Prepare entry into the image
- * corresponding to the desired security state after the next ERET.
- */
- bl31_prepare_next_image_entry(); //准备跳转到bl33,在执行runtime_service的时候会存在一个spd service,该在service的init函数中将会去执行bl32的image完成TEE OS初始化
-
- console_flush();
-
- /*
- * Perform any platform specific runtime setup prior to cold boot exit
- * from BL31
- */
- bl31_plat_runtime_setup();
- }
该函数主要用来建立smc索引表并执行EL3中提供的service的初始化操作
- void runtime_svc_init(void)
- {
- int rc = 0, index, start_idx, end_idx;
-
- /* Assert the number of descriptors detected are less than maximum indices */
- /*判定rt_svc_descs段中的是否超出MAX_RT_SVCS条*/
- assert((RT_SVC_DESCS_END >= RT_SVC_DESCS_START) &&
- (RT_SVC_DECS_NUM < MAX_RT_SVCS));
-
- /* If no runtime services are implemented then simply bail out */
- if (RT_SVC_DECS_NUM == 0)
- return;
-
- /* Initialise internal variables to invalid state */
- /* 初始化 t_svc_descs_indices数组中的数据成-1,表示当前所有的service无效*/
- memset(rt_svc_descs_indices, -1, sizeof(rt_svc_descs_indices));
-
- /* 获取第一条EL3 service在RAM中的起始地址,通过获取RT_SVC_DESCS_START的值来确定,该值在链接文件中有定义 */
- rt_svc_descs = (rt_svc_desc_t *) RT_SVC_DESCS_START;
-
- /* 遍历整个rt_svc_des段,将其call type与rt_svc_descs_indices中的index建立对应关系 */
- for (index = 0; index < RT_SVC_DECS_NUM; index++) {
- rt_svc_desc_t *service = &rt_svc_descs[index];
-
- /*
- * An invalid descriptor is an error condition since it is
- * difficult to predict the system behaviour in the absence
- * of this service.
- */
- /* 判定在编译的时候注册的service是否有效 */
- rc = validate_rt_svc_desc(service);
- if (rc) {
- ERROR("Invalid runtime service descriptor %p\n",
- (void *) service);
- panic();
- }
-
- /*
- * The runtime service may have separate rt_svc_desc_t
- * for its fast smc and standard smc. Since the service itself
- * need to be initialized only once, only one of them will have
- * an initialisation routine defined. Call the initialisation
- * routine for this runtime service, if it is defined.
- */
- /* 执行当前service的init的操作 */
- if (service->init) {
- rc = service->init();
- if (rc) {
- ERROR("Error initializing runtime service %s\n",
- service->name);
- continue;
- }
- }
-
- /*
- * Fill the indices corresponding to the start and end
- * owning entity numbers with the index of the
- * descriptor which will handle the SMCs for this owning
- * entity range.
- */
- /* 根据该service的call type以及start oen来确定一个唯一的index,并且将该service中支持的所有的call type生成的唯一表示映射到同一个index中 */
- start_idx = get_unique_oen(rt_svc_descs[index].start_oen,
- service->call_type);
- assert(start_idx < MAX_RT_SVCS);
- end_idx = get_unique_oen(rt_svc_descs[index].end_oen,
- service->call_type);
- assert(end_idx < MAX_RT_SVCS);
- for (; start_idx <= end_idx; start_idx++)
- rt_svc_descs_indices[start_idx] = index;
- }
- }
该宏用来在编译的时候将EL3中的service编译进rt_svc_descs段中,该宏定义如下:
- #define DECLARE_RT_SVC(_name, _start, _end, _type, _setup, _smch) \
- static const rt_svc_desc_t __svc_desc_ ## _name \
- __section("rt_svc_descs") __used = { \
- .start_oen = _start, \
- .end_oen = _end, \
- .call_type = _type, \
- .name = #_name, \
- .init = _setup, \
- .handle = _smch }
start_oen:该service的起始内部number
end.oen: 该service的末尾number
call_type: 调用的smc的类型
name: 该service的名字
init: 该service在执行之前需要被执行的初始化操作
handle: 当触发了call type的调用时调用的handle该请求的函数
实现从bl31到OP-TEE的跳转是通过执行opteed_setup函数来实现的,该函数在执行runtime_svc_int中对各service做service->init()函数来实现,而OPTEE这个service就是通过DECALARE_RT_SVC被注册到tr_svc_descs段中,代码存在service/spd/opteed/opteed_main.c文件中,内容如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。