赞
踩
在前面的几章节中探讨了aiSim仿真合成数据的置信度,此外在场景重建和测试流程闭环的过程中,难免会面临3D场景制作重建耗时长、成本高、扩展性低以及交通状况复杂程度难以满意等问题,当前的主要挑战在于如何自动化生成3D静态场景并添加动态实例编辑,从而有效缩短测试流程,扩大仿真测试范围。
对于3D重建,目前主要的两种解决方案为NeRF和3DGS。
目录
1、神经辐射场(Neural Radiance Fields)
1、3D高斯泼溅(3D Gaussian Splatting)
NeRF是将三维空间中的每个点的颜色和密度信息编码为一个连续的函数并由MLP参数化。给定一个视角和三维空间中的点,NeRF可以预测该点的颜色和沿视线方向的密度分布。通过对这些信息进行体积渲染,NeRF能够合成出新视角下的图像。
当然为了解决这些问题研究人员通过引入深度正则化来提升NeRF深度估计的准确性和稳定性,通过优化NeRF的结构和算法提升渲染速度。
3DGS采用三维高斯分布来表示场景中的点云数据,每个点用一个具有均值和协方差的高斯函数来描述。通过光栅化渲染高斯函数,从而生成逼真的3D场景图像。
通过优化超参数和采用新方法,如Scaffold-GS,可能有助于减少内存需求,提高在大型场景下的处理能力。
第一步:输入——相机视频数据;自车运动数据;校准数据;用于深度正则化的LiDAR点云数据;
第二步:移除动态对象:创建分割图来识别和遮罩图像中的不同对象和区域;对动态对象进行自动注释*(康谋aiData工具链);
第三步: 进行NeRF或Gaussian splatting。
NeRF:
Gaussian splatting:
在aiSim5中完成动态对象的添加后,可以自由的在地图场景中更改交通状态,用于感知/规控等系统的SiL/HiL测试。
康谋科技仿真测试业务技术主管,拥有超过5年的汽车仿真测试及自动驾驶技术研发经验,熟练掌握仿真测试工具和平台,如aiSim、HEEX等,能有效评估和优化自动驾驶系统的性能和安全性。拥有出色的跨文化沟通能力,成功带领团队完成多项海外技术合作项目,加速了公司在自动驾驶技术上的国际化进程。作为技术团队的核心,领导并实施过大规模的自动驾驶仿真测试项目,对于车辆行为建模、环境模拟以及故障诊断具有独到见解。擅长运用大数据分析和人工智能技术,优化仿真测试流程,提高测试效率和结果的准确性。
如您对上述产品和解决方案感兴趣,
欢迎联系康谋自动驾驶团队了解更多信息。
我们将竭诚为您服务!
期待与您的交流!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。