赞
踩
本次例子,我们将要访问的 http://192.168.3.200 服务端。在终端一用 tcpdump 命令抓取数据包:
接着,在终端二执行下面的 curl 命令:
最后,回到终端一,按下 Ctrl+C 停止 tcpdump,并把得到的 http.pcap 取出到电脑。
使用 Wireshark 打开 http.pcap 后,你就可以在 Wireshark 中,看到如下的界面:
我们都知道 HTTP 是基于 TCP 协议进行传输的,那么:
Wireshark 可以用时序图的方式显示数据包交互的过程,从菜单栏中,点击 统计 (Statistics) -> 流量图 (Flow Graph),然后,在弹出的界面中的「流量类型」选择 「TCP Flows」,你可以更清晰的看到,整个过程中 TCP 流的执行过程:
你可能会好奇,为什么三次握手连接过程的 Seq 是 0 ?
实际上是因为 Wireshark 工具帮我们做了优化,它默认显示的是序列号 seq 是相对值,而不是真实值。
如果你想看到实际的序列号的值,可以右键菜单, 然后找到「协议首选项」,接着找到「Relative Seq」后,把它给取消,操作如下:
取消后,Seq 显示的就是真实值了:
可见,客户端和服务端的序列号实际上是不同的,序列号是一个随机值。
这其实跟我们书上看到的 TCP 三次握手和四次挥手很类似,作为对比,你通常看到的 TCP 三次握手和四次挥手的流程,基本是这样的:
为什么抓到的 TCP 挥手是三次,而不是书上说的四次?
因为服务器端收到客户端的 FIN
后,服务器端同时也要关闭连接,这样就可以把 ACK
和 FIN
合并到一起发送,节省了一个包,变成了“三次挥手”。
而通常情况下,服务器端收到客户端的 FIN
后,很可能还没发送完数据,所以就会先回复客户端一个 ACK
包,稍等一会儿,完成所有数据包的发送后,才会发送 FIN
包,这也就是四次挥手了。
如下图,就是四次挥手的过程:
TCP 三次握手的过程相信大家都背的滚瓜烂熟,那么你有没有想过这三个异常情况:
有的小伙伴可能说:“很简单呀,包丢了就会重传嘛。”
那我在继续问你:
是不是哑口无言,无法回答?
不知道没关系,接下里我用三个实验案例,带大家一起探究探究这三种异常。
实验场景
本次实验用了两台虚拟机,一台作为服务端,一台作为客户端,它们的关系如下:
为了模拟 TCP 第一次握手 SYN 丢包的情况,我是在拔掉服务器的网线后,立刻在客户端执行 curl 命令:
其间 tcpdump 抓包的命令如下:
过了一会, curl 返回了超时连接的错误:
从 date
返回的时间,可以发现在超时接近 1 分钟的时间后,curl 返回了错误。
接着,把 tcp_sys_timeout.pcap 文件用 Wireshark 打开分析,显示如下图:
从上图可以发现, 客户端发起了 SYN 包后,一直没有收到服务端的 ACK ,所以一直超时重传了 5 次,并且每次 RTO 超时时间是不同的:
可以发现,每次超时时间 RTO 是指数(翻倍)上涨的,当超过最大重传次数后,客户端不再发送 SYN 包。
在 Linux 中,第一次握手的 SYN
超时重传次数,是如下内核参数指定的(我自己的服务器是6次,与作者实验中的略有差异):
- [root@192 ~]# cat /proc/sys/net/ipv4/tcp_syn_retries
- 6
- [root@192 ~]#
tcp_syn_retries
默认值为 5,也就是 SYN 最大重传次数是 5 次。
接下来,我们继续做实验,把 tcp_syn_retries
设置为 2 次:
echo 2 > /proc/sys/net/ipv4/tcp_syn_retries
重传抓包后,用 Wireshark 打开分析,显示如下图:
实验一的实验小结
通过实验一的实验结果,我们可以得知,当客户端发起的 TCP 第一次握手 SYN 包,在超时时间内没收到服务端的 ACK,就会在超时重传 SYN 数据包,每次超时重传的 RTO 是翻倍上涨的,直到 SYN 包的重传次数到达 tcp_syn_retries 值后,客户端不再发送 SYN 包。
为了模拟客户端收不到服务端第二次握手 SYN、ACK 包,我的做法是在客户端加上防火墙限制,直接粗暴的把来自服务端的数据都丢弃,防火墙的配置如下:
接着,在客户端执行 curl 命令:
从 date
返回的时间前后,可以算出大概 1 分钟后,curl 报错退出了。
客户端在这其间抓取的数据包,用 Wireshark 打开分析,显示的时序图如下:
从图中可以发现:
所以,我们可以发现,当第二次握手的 SYN、ACK 丢包时,客户端会超时重发 SYN 包,服务端也会超时重传 SYN、ACK 包。
咦?客户端设置了防火墙,屏蔽了服务端的网络包,为什么 tcpdump 还能抓到服务端的网络包?
添加 iptables 限制后, tcpdump 是否能抓到包 ,这要看添加的 iptables 限制条件:
INPUT
规则,则可以抓得到包OUTPUT
规则,则抓不到包网络包进入主机后的顺序如下:
tcp_syn_retries 是限制 SYN 重传次数,那第二次握手 SYN、ACK 限制最大重传次数是多少?
TCP 第二次握手 SYN、ACK 包的最大重传次数是通过 tcp_synack_retries
内核参数限制的,其默认值如下:
- [root@192 ~]# cat /proc/sys/net/ipv4/tcp_synack_retries
- 5
- [root@192 ~]#
是的,TCP 第二次握手 SYN、ACK 包的最大重传次数默认值是 5
次。
为了验证 SYN、ACK 包最大重传次数是 5 次,我们继续做下实验,我们先把客户端的 tcp_syn_retries
设置为 1,表示客户端 SYN 最大超时次数是 1 次,目的是为了防止多次重传 SYN,把服务端 SYN、ACK 超时定时器重置。
接着,还是如上面的步骤:
把抓取的数据包,用 Wireshark 打开分析,显示的时序图如下:
从上图,我们可以分析出:
接着,我把 tcp_synack_retries 设置为 2,tcp_syn_retries
依然设置为 1:
- $ echo 2 > /proc/sys/net/ipv4/tcp_synack_retries
- $ echo 1 > /proc/sys/net/ipv4/tcp_syn_retries
依然保持一样的实验步骤进行操作,接着把抓取的数据包,用 Wireshark 打开分析,显示的时序图如下:
可见:
实验二的实验小结
通过实验二的实验结果,我们可以得知,当 TCP 第二次握手 SYN、ACK 包丢了后,客户端 SYN 包会发生超时重传,服务端 SYN、ACK 也会发生超时重传。
客户端 SYN 包超时重传的最大次数,是由 tcp_syn_retries 决定的,默认值是 5 次;服务端 SYN、ACK 包时重传的最大次数,是由 tcp_synack_retries 决定的,默认值是 5 次。
为了模拟 TCP 第三次握手 ACK 包丢,我的实验方法是在服务端配置防火墙,屏蔽客户端 TCP 报文中标志位是 ACK 的包,也就是当服务端收到客户端的 TCP ACK 的报文时就会丢弃,iptables 配置命令如下:
接着,在客户端执行如下 tcpdump 命令:
然后,客户端向服务端发起 telnet,因为 telnet 命令是会发起 TCP 连接,所以用此命令做测试:
此时,由于服务端收不到第三次握手的 ACK 包,所以一直处于 SYN_RECV
状态:
而客户端是已完成 TCP 连接建立,处于 ESTABLISHED
状态:
过了 1 分钟后,观察发现服务端的 TCP 连接不见了:
过了 30 分钟,客户端依然还是处于 ESTABLISHED
状态:
接着,在刚才客户端建立的 telnet 会话,输入 123456 字符,进行发送:
持续「好长」一段时间,客户端的 telnet 才断开连接:
以上就是本次的实现三的现象,这里存在两个疑点:
SYN_RECV
状态的连接,过 1 分钟后就消失了?不着急,我们把刚抓的数据包,用 Wireshark 打开分析,显示的时序图如下:
上图的流程:
通过这一波分析,刚才的两个疑点已经解除了:
tcp_synack_retries
,于是服务端的 TCP 连接主动断开了。TCP 第一次握手的 SYN 包超时重传最大次数是由 tcp_syn_retries 指定,TCP 第二次握手的 SYN、ACK 包超时重传最大次数是由 tcp_synack_retries 指定,那 TCP 建立连接后的数据包最大超时重传次数是由什么参数指定呢?
TCP 建立连接后的数据包传输,最大超时重传次数是由 tcp_retries2
指定,默认值是 15 次,如下:
- [root@192 ~]# cat /proc/sys/net/ipv4/tcp_retries2
- 15
- [root@192 ~]#
如果 15 次重传都做完了,TCP 就会告诉应用层说:“搞不定了,包怎么都传不过去!”
那如果客户端不发送数据,什么时候才会断开处于 ESTABLISHED 状态的连接?
这里就需要提到 TCP 的 保活机制。这个机制的原理是这样的:
定义一个时间段,在这个时间段内,如果没有任何连接相关的活动,TCP 保活机制会开始作用,每隔一个时间间隔,发送一个「探测报文」,该探测报文包含的数据非常少,如果连续几个探测报文都没有得到响应,则认为当前的 TCP 连接已经死亡,系统内核将错误信息通知给上层应用程序。
在 Linux 内核可以有对应的参数可以设置保活时间、保活探测的次数、保活探测的时间间隔,以下都为默认值:
- net.ipv4.tcp_keepalive_time=7200
- net.ipv4.tcp_keepalive_intvl=75
- net.ipv4.tcp_keepalive_probes=9
也就是说在 Linux 系统中,最少需要经过 2 小时 11 分 15 秒才可以发现一个「死亡」连接。
这个时间是有点长的,所以如果我抓包足够久,或许能抓到探测报文。
实验三的实验小结
在建立 TCP 连接时,如果第三次握手的 ACK,服务端无法收到,则服务端就会短暂处于 SYN_RECV
状态,而客户端会处于 ESTABLISHED
状态。
由于服务端一直收不到 TCP 第三次握手的 ACK,则会一直重传 SYN、ACK 包,直到重传次数超过 tcp_synack_retries
值(默认值 5 次)后,服务端就会断开 TCP 连接。
而客户端则会有两种情况:
客户端在向服务端发起 HTTP GET 请求时,一个完整的交互过程,需要 2.5 个 RTT 的时延。
由于第三次握手是可以携带数据的,这时如果在第三次握手发起 HTTP GET 请求,需要 2 个 RTT 的时延。
但是在下一次(不是同个 TCP 连接的下一次)发起 HTTP GET 请求时,经历的 RTT 也是一样,如下图:
在 Linux 3.7 内核版本中,提供了 TCP Fast Open 功能,这个功能可以减少 TCP 连接建立的时延。
注:客户端在请求并存储了 Fast Open Cookie 之后,可以不断重复 TCP Fast Open 直至服务器认为 Cookie 无效(通常为过期)
在 Linux 上如何打开 Fast Open 功能?
可以通过设置 net.ipv4.tcp_fastopn
内核参数,来打开 Fast Open 功能。
net.ipv4.tcp_fastopn 各个值的意义:
TCP Fast Open 抓包分析
在下图,数据包 7 号,客户端发起了第二次 TCP 连接时,SYN 包会携带 Cookie,并且长度为 5 的数据。
服务端收到后,校验 Cooike 合法,于是就回了 SYN、ACK 包,并且确认应答收到了客户端的数据包,ACK = 5 + 1 = 6
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。