当前位置:   article > 正文

【遥遥领先】融合Gold-YOLO的改进YOLOv5的水果新鲜度分级分拣系统_simfusion模块

simfusion模块

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

研究背景与意义

随着人们对健康和营养的关注度不断提高,对新鲜水果的需求也越来越大。然而,传统的水果分级分拣系统往往需要大量的人力和时间,效率低下且易受主观因素影响。因此,开发一种高效准确的水果新鲜度分级分拣系统对于提高水果行业的生产效率和质量管理至关重要。

目前,深度学习技术在计算机视觉领域取得了巨大的突破,特别是目标检测算法的发展。其中,YOLO(You Only Look Once)算法以其快速、准确的特点成为了目标检测领域的热门算法之一。然而,传统的YOLO算法在处理水果新鲜度分级分拣任务时存在一些挑战,例如对于水果的颜色、纹理等特征的识别能力较弱,导致分级分拣的准确性不高。

因此,本研究旨在融合Gold-YOLO和改进的YOLOv5算法,开发一种遥遥领先的水果新鲜度分级分拣系统。具体来说,我们将利用Gold-YOLO算法的优势,即通过引入金字塔特征金字塔网络(FPN)和多尺度预测来提高目标检测的准确性。同时,我们将对YOLOv5算法进行改进,以增强其对水果颜色、纹理等特征的识别能力。

该研究的意义主要体现在以下几个方面:

  1. 提高水果分级分拣的准确性:通过融合Gold-YOLO和改进的YOLOv5算法,我们可以提高水果新鲜度分级分拣系统的准确性。这将有助于减少误判和漏判的情况,提高水果分级分拣的精度和效率。

  2. 提高水果行业的生产效率:传统的水果分级分拣系统需要大量的人力和时间,而且易受主观因素影响。采用遥遥领先的水果新鲜度分级分拣系统可以大大提高水果行业的生产效率,减少人力成本和时间成本。

  3. 促进水果行业的质量管理:水果的新鲜度是影响其品质和口感的重要因素。通过准确地分级分拣水果的新鲜度,可以有效提高水果行业的质量管理水平,确保消费者能够购买到新鲜、优质的水果产品。

  4. 推动深度学习技术在农业领域的应用:本研究将融合Gold-YOLO和改进的YOLOv5算法,为深度学习技术在农业领域的应用提供了一个典型案例。这将有助于推动农业领域的智能化发展,提高农业生产的效率和质量。

综上所述,开发一种遥遥领先的融合Gold-YOLO的改进YOLOv5的水果新鲜度分级分拣系统具有重要的研究意义和实际应用价值。通过提高水果分级分拣的准确性、提高生产效率和质量管理水平,以及推动深度学习技术在农业领域的应用,该系统将为水果行业的发展带来巨大的推动力。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.视频演示

【遥遥领先】融合Gold-YOLO的改进YOLOv5的水果新鲜度分级分拣系统_哔哩哔哩_bilibili

4.数据集的采集&标注和整理

图片的收集

首先,我们需要收集所需的图片。这可以通过不同的方式来实现,例如使用现有的公开数据集FreshnessDatasets。
在这里插入图片描述

下面是一个简单的方法是使用Python脚本,该脚本读取分类图片文件,然后将其转换为所需的格式。

import os
import shutil
import random

# 指定输入和输出文件夹的路径
input_dir = 'train'
output_dir = 'output'

# 确保输出文件夹存在
if not os.path.exists(output_dir):
    os.makedirs(output_dir)

# 遍历输入文件夹中的所有子文件夹
for subdir in os.listdir(input_dir):
    input_subdir_path = os.path.join(input_dir, subdir)

    # 确保它是一个子文件夹
    if os.path.isdir(input_subdir_path):
        output_subdir_path = os.path.join(output_dir, subdir)

        # 在输出文件夹中创建同名的子文件夹
        if not os.path.exists(output_subdir_path):
            os.makedirs(output_subdir_path)

        # 获取所有文件的列表
        files = [f for f in os.listdir(input_subdir_path) if os.path.isfile(os.path.join(input_subdir_path, f))]

        # 随机选择四分之一的文件
        files_to_move = random.sample(files, len(files) // 4)

        # 移动文件
        for file_to_move in files_to_move:
            src_path = os.path.join(input_subdir_path, file_to_move)
            dest_path = os.path.join(output_subdir_path, file_to_move)
            shutil.move(src_path, dest_path)

print("任务完成!")


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
整理数据文件夹结构

我们需要将数据集整理为以下结构:

-----dataset
	-----dataset
           |-----train
           |   |-----class1
           |   |-----class2
           |   |-----.......
           |
           |-----valid
           |   |-----class1
           |   |-----class2
           |   |-----.......
           |
           |-----test
           |   |-----class1
           |   |-----class2
           |   |-----.......

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
模型训练
 Epoch   gpu_mem       box       obj       cls    labels  img_size
 1/200     20.8G   0.01576   0.01955  0.007536        22      1280: 100%|██████████| 849/849 [14:42<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00,  2.87it/s]
             all       3395      17314      0.994      0.957      0.0957      0.0843

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 2/200     20.8G   0.01578   0.01923  0.007006        22      1280: 100%|██████████| 849/849 [14:44<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00,  2.95it/s]
             all       3395      17314      0.996      0.956      0.0957      0.0845

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 3/200     20.8G   0.01561    0.0191  0.006895        27      1280: 100%|██████████| 849/849 [10:56<00:00,  1.29it/s]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|███████   | 187/213 [00:52<00:00,  4.04it/s]
             all       3395      17314      0.996      0.957      0.0957      0.0845
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

5.核心代码讲解

5.1 common.py


def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1, bias=False):
    '''Basic cell for rep-style block, including conv and bn'''
    result = nn.Sequential()
    result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                        kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
                                        bias=bias))
    result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
    return result

class RepVGGBlock(nn.Module):
    '''RepVGGBlock is a basic rep-style block, including training and deploy status
    This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
    '''
    
    def __init__(self, in_channels, out_channels, kernel_size=3,
                 stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
        super(RepVGGBlock, self).__init__()
        """ Initialization of the class.
        Args:
            in_channels (int): Number of channels in the input image
            out_channels (int): Number of channels produced by the convolution
            kernel_size (int or tuple): Size of the convolving kernel
            stride (int or tuple, optional): Stride of the convolution. Default: 1
            padding (int or tuple, optional): Zero-padding added to both sides of
                the input. Default: 1
            dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
            groups (int, optional): Number of blocked connections from input
                channels to output channels. Default: 1
            padding_mode (string, optional): Default: 'zeros'
            deploy: Whether to be deploy status or training status. Default: False
            use_se: Whether to use se. Default: False
        """
        self.deploy = deploy
        self.groups = groups
        self.in_channels = in_channels
        self.out_channels = out_channels
        
        assert kernel_size == 3
        assert padding == 1
        
        padding_11 = padding - kernel_size // 2
        
        self.nonlinearity = nn.ReLU()
        
        if use_se:
            raise NotImplementedError("se block not supported yet")
        else:
            self.se = nn.Identity()
        
        if deploy:
            self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                         stride=stride,
                                         padding=padding, dilation=dilation, groups=groups, bias=True,
                                         padding_mode=padding_mode)
        
        else:
            self.rbr_identity = nn.BatchNorm2d(
                    num_features=in_channels) if out_channels == in_channels and stride == 1 else None
            self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                     stride=stride, padding=padding, groups=groups)
            self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
                                   padding=padding_11, groups=groups)
    
    def forward(self, inputs):
        '''Forward process'''
        if hasattr(self, 'rbr_reparam'):
            return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
        
        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)
        
        return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))
    
    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
    
    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
    
    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std
    
    def switch_to_deploy(self):
        if hasattr(self, 'rbr_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.rbr_reparam = nn.</
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/643841
推荐阅读
相关标签
  

闽ICP备14008679号