赞
踩
linux的 IO 指的是 Input/Output,也就是输入/输出,是应用程序对驱动设备的输入/输出操作。当应用程序对设备驱动进行操作的时候,如果不能获取到设备资源,那么阻塞式 IO 就会将应用程序对应的线程挂起,直到设备资源可以获取为止。阻塞其实就是进入了休眠状态,交出了 CPU 控制权。对于非阻塞 IO,应用程序对应的线程不会挂起,它要么一直轮询等待,直到设备资源可以使用,要么就直接放弃。
当对文件进行读操作时,如果数据未准备好、文件当前无数据可读,那么读操作可能会使调用者阻塞,直到有数据可读时才会被唤醒,这就是阻塞式 I/O 常见的一种表现;如果是非阻塞式 I/O,即使没有数据可读,也不会被阻塞、而是会立马返回错误!
普通文件的读写操作是不会阻塞的,不管读写多少个字节数据,read()或 write()一定会在有限的时间内返回,所以普通文件一定是以非阻塞的方式进行 I/O 操作,这是普通文件本质上决定的;但是对于某些文件类型,譬如设备文件,它们既可以使用阻塞式 I/O 操作,也可以使用非阻塞式 I/O进行操作。
在调用 open()函数打开文件时,为参数 flags 指定 O_NONBLOCK 标志,open()调用成功后,后续的 I/O 操作将以非阻塞式方式进行;这就是非阻塞 I/O 的打开方式,如果未指定 O_NONBLOCK 标志,则默认使用阻塞式 I/O 进行操作。对于普通文件来说,指定与未指定 O_NONBLOCK 标志对其是没有影响,普通文件的读写操作是不会阻塞的,它总是以非阻塞的方式进行 I/O 操作,这是普通文件本质上决定的。
应用程序实现阻塞访问:
int fd;
int data = 0;
fd = open("/dev/xxx_dev", O_RDWR); /* 阻塞方式打开 */
ret = read(fd, &data, sizeof(data)); /* 读取数据 */
应用程序采用非阻塞方式访问驱动设备文件:
int fd;
int data = 0;
fd = open("/dev/xxx_dev", O_RDWR | O_NONBLOCK); /* 非阻塞方式打开 */
ret = read(fd, &data, sizeof(data)); /* 读取数据 */
当对文件进行读取操作时,如果文件当前无数据可读,那么阻塞式 I/O 会将调用者应用程序挂起、进入休眠阻塞状态,直到有数据可读时才会解除阻塞;而对于非阻塞 I/O,应用程序不会被挂起,而是会立即返回,它要么一直轮训等待,直到数据可读,要么直接放弃。所以阻塞式 I/O 的优点在于能够提升 CPU 的处理效率,当自身条件不满足时,进入阻塞状态,交出 CPU资源,将 CPU 资源让给别人使用;而非阻塞式则是抓紧利用 CPU 资源,譬如不断地去轮训,这样就会导致该程序占用了非常高的 CPU 使用率。
所以阻塞式 I/O 无法实现并发读取(同时读取),非阻塞 I/O 可以并发读取(同时读取),但由于程序当中使用轮训方式,故而会使得该程序的 CPU 占用率特别高,终归还是不太安全,会对整个系统产生很大的副作用。为了解决这个问题,可以使用 I/O 多路复用。
I/O 多路复用(IO multiplexing)它通过一种机制,可以监视多个文件描述符,一旦某个文件描述符(也就是某个文件)可以执行 I/O 操作时,能够通知应用程序进行相应的读写操作。I/O 多路复用技术是为了解决:在并发式 I/O 场景中进程或线程阻塞到某个 I/O 系统调用而出现的技术,使进程不阻塞于某个特定的I/O 系统调用。由此可知,I/O 多路复用一般用于并发式的非阻塞 I/O,也就是多路非阻塞 I/O。I/O 多路复用存在一个非常明显的特征:外部阻塞式,内部监视多路 I/O。
使用阻塞或者非阻塞的方式来读取都是应用程序主动读取的,对于非阻塞方式来说还需要应用程序通过 poll 函数不断的轮询。最好的方式就是驱动程序能主动向应用程序发出通知,报告自己可以访问,然后应用程序在从驱动程序中读取或写入数据,类似于中断。Linux 提供了异步通知这个机制来完成此功能。
Linux 应用程序可以通过阻塞或者非阻塞这两种方式来访问驱动设备,通过阻塞方式访问的话应用程序会处于休眠态,等待驱动设备可以使用,非阻塞方式的话会通过 poll 函数来不断的轮询,查看驱动设备文件是否可以使用。这两种方式都需要应用程序主动的去查询设备的使用情况。异步通知可以通过主动向应用程序发送信号的方式来报告自己可以访问了,应用程序获取到信号以后就可以从驱动设备中读取或者写入数据了。整个过程就相当于应用程序收到了驱动发送过来了的一个中断,然后应用程序去响应这个中断,在整个处理过程中应用程序并没有去查询驱动设备是否可以访问,一切都是由驱动设备自己告诉给应用程序的。
阻塞、非阻塞、异步通知,这三种是针对不同的场合提出来的不同的解决方法,没有优劣之分,在实际的工作和学习中,根据自己的实际需求选择合适的处理方法。
应用程序实现阻塞访问:
int fd;
int data = 0;
fd = open("/dev/xxx_dev", O_RDWR); /* 阻塞方式打开 */
ret = read(fd, &data, sizeof(data)); /* 读取数据 */
阻塞访问最大的好处就是当设备文件不可操作的时候进程可以进入休眠态,这样可以将CPU 资源让出来。但是,当设备文件可以操作的时候就必须唤醒进程,一般在中断函数里面完成唤醒工作。Linux 内核提供了等待队列(wait queue)来实现阻塞进程的唤醒工作。
如果我们要在驱动中使用等待队列,必须创建并初始化一个等待队列头,等待队列头使用结构体wait_queue_head_t 表示,wait_queue_head_t 结构体定义在文件 include/linux/wait.h 中,结构体内容如下所示:
struct __wait_queue_head {
spinlock_t lock;
struct list_head task_list;
};
typedef struct __wait_queue_head wait_queue_head_t;
定义好等待队列头以后需要初始化,使用 init_waitqueue_head 函数初始化等待队列头,函数原型如下:
void init_waitqueue_head(wait_queue_head_t *q)
参数 q 就是要初始化的等待队列头。也可以使用宏 DECLARE_WAIT_QUEUE_HEAD 来一次性完成等待队列头的定义的初始化。
等待队列头就是一个等待队列的头部,每个访问设备的进程都是一个队列项,当设备不可用的时候就要将这些进程对应的等待队列项添加到等待队列里面。结构体 wait_queue_t 表示等待队列项,结构体内容如下:
struct __wait_queue {
unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head task_list;
};
typedef struct __wait_queue wait_queue_t;
使用宏 DECLARE_WAITQUEUE 定义并初始化一个等待队列项,宏的内容如下:
DECLARE_WAITQUEUE(name, tsk)
name 就是等待队列项的名字,tsk 表示这个等待队列项属于哪个任务(进程),一般设置为current , 在 Linux 内核中 current 相 当 于 一 个 全 局 变 量 , 表 示 当 前 进 程 。 因 此 宏DECLARE_WAITQUEUE 就是给当前正在运行的进程创建并初始化了一个等待队列项。
当设备不可访问的时候就需要将进程对应的等待队列项添加到前面创建的等待队列头中,只有添加到等待队列头中以后进程才能进入休眠态。当设备可以访问以后再将进程对应的等待队列项从等待队列头中移除即可,等待队列项添加 API 函数如下:
void add_wait_queue(wait_queue_head_t *q,
wait_queue_t *wait)
函数参数和返回值含义如下:
q:等待队列项要加入的等待队列头。
wait:要加入的等待队列项。
返回值:无。
等待队列项移除 API 函数如下:
void remove_wait_queue(wait_queue_head_t *q,
wait_queue_t *wait)
函数参数和返回值含义如下:
q:要删除的等待队列项所处的等待队列头。
wait:要删除的等待队列项。
返回值:无。
当设备可以使用的时候就要唤醒进入休眠态的进程,唤醒可以使用如下两个函数:
void wake_up(wait_queue_head_t *q)
void wake_up_interruptible(wait_queue_head_t *q)
参数 q 就是要唤醒的等待队列头,这两个函数会将这个等待队列头中的所有进程都唤醒。wake_up 函数可以唤醒处于 TASK_INTERRUPTIBLE 和 TASK_UNINTERRUPTIBLE 状态的进程,而 wake_up_interruptible 函数只能唤醒处于 TASK_INTERRUPTIBLE 状态的进程。
#include <linux/types.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/ide.h> #include <linux/init.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/gpio.h> #include <linux/cdev.h> #include <linux/device.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_gpio.h> #include <linux/semaphore.h> #include <linux/timer.h> #include <linux/of_irq.h> #include <linux/irq.h> #include <asm/mach/map.h> #include <asm/uaccess.h> #include <asm/io.h> #define IMX6UIRQ_CNT 1 /* 设备号个数 */ #define IMX6UIRQ_NAME "blockio" /* 名字 */ #define KEY0VALUE 0X01 /* KEY0按键值 */ #define INVAKEY 0XFF /* 无效的按键值 */ #define KEY_NUM 1 /* 按键数量 */ /* 中断IO描述结构体 */ struct irq_keydesc { int gpio; /* gpio */ int irqnum; /* 中断号 */ unsigned char value; /* 按键对应的键值 */ char name[10]; /* 名字 */ irqreturn_t (*handler)(int, void *); /* 中断服务函数 */ }; /* imx6uirq设备结构体 */ struct imx6uirq_dev{ dev_t devid; /* 设备号 */ struct cdev cdev; /* cdev */ struct class *class; /* 类 */ struct device *device; /* 设备 */ int major; /* 主设备号 */ int minor; /* 次设备号 */ struct device_node *nd; /* 设备节点 */ atomic_t keyvalue; /* 有效的按键键值 */ atomic_t releasekey; /* 标记是否完成一次完成的按键,包括按下和释放 */ struct timer_list timer;/* 定义一个定时器*/ struct irq_keydesc irqkeydesc[KEY_NUM]; /* 按键init述数组 */ unsigned char curkeynum; /* 当前init按键号 */ wait_queue_head_t r_wait; /* 读等待队列头 */ }; struct imx6uirq_dev imx6uirq; /* irq设备 */ /* @description : 中断服务函数,开启定时器 * 定时器用于按键消抖。 * @param - irq : 中断号 * @param - dev_id : 设备结构。 * @return : 中断执行结果 */ static irqreturn_t key0_handler(int irq, void *dev_id) { struct imx6uirq_dev *dev = (struct imx6uirq_dev*)dev_id; dev->curkeynum = 0; dev->timer.data = (volatile long)dev_id; mod_timer(&dev->timer, jiffies + msecs_to_jiffies(10)); /* 10ms定时 */ return IRQ_RETVAL(IRQ_HANDLED); } /* @description : 定时器服务函数,用于按键消抖,定时器到了以后 * 再次读取按键值,如果按键还是处于按下状态就表示按键有效。 * @param - arg : 设备结构变量 * @return : 无 */ void timer_function(unsigned long arg) { unsigned char value; unsigned char num; struct irq_keydesc *keydesc; struct imx6uirq_dev *dev = (struct imx6uirq_dev *)arg; num = dev->curkeynum; keydesc = &dev->irqkeydesc[num]; value = gpio_get_value(keydesc->gpio); /* 读取IO值 */ if(value == 0){ /* 按下按键 */ atomic_set(&dev->keyvalue, keydesc->value); } else{ /* 按键松开 */ atomic_set(&dev->keyvalue, 0x80 | keydesc->value); atomic_set(&dev->releasekey, 1); /* 标记松开按键,即完成一次完整的按键过程 */ } /* 唤醒进程 */ if(atomic_read(&dev->releasekey)) { /* 完成一次按键过程 */ /* wake_up(&dev->r_wait); */ wake_up_interruptible(&dev->r_wait); } } /* * @description : 按键IO初始化 * @param : 无 * @return : 无 */ static int keyio_init(void) { unsigned char i = 0; char name[10]; int ret = 0; imx6uirq.nd = of_find_node_by_path("/key"); if (imx6uirq.nd== NULL){ printk("key node not find!\r\n"); return -EINVAL; } /* 提取GPIO */ for (i = 0; i < KEY_NUM; i++) { imx6uirq.irqkeydesc[i].gpio = of_get_named_gpio(imx6uirq.nd ,"key-gpio", i); if (imx6uirq.irqkeydesc[i].gpio < 0) { printk("can't get key%d\r\n", i); } } /* 初始化key所使用的IO,并且设置成中断模式 */ for (i = 0; i < KEY_NUM; i++) { memset(imx6uirq.irqkeydesc[i].name, 0, sizeof(name)); /* 缓冲区清零 */ sprintf(imx6uirq.irqkeydesc[i].name, "KEY%d", i); /* 组合名字 */ gpio_request(imx6uirq.irqkeydesc[i].gpio, name); gpio_direction_input(imx6uirq.irqkeydesc[i].gpio); imx6uirq.irqkeydesc[i].irqnum = irq_of_parse_and_map(imx6uirq.nd, i); } /* 申请中断 */ imx6uirq.irqkeydesc[0].handler = key0_handler; imx6uirq.irqkeydesc[0].value = KEY0VALUE; for (i = 0; i < KEY_NUM; i++) { ret = request_irq(imx6uirq.irqkeydesc[i].irqnum, imx6uirq.irqkeydesc[i].handler, IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING, imx6uirq.irqkeydesc[i].name, &imx6uirq); if(ret < 0){ printk("irq %d request failed!\r\n", imx6uirq.irqkeydesc[i].irqnum); return -EFAULT; } } /* 创建定时器 */ init_timer(&imx6uirq.timer); imx6uirq.timer.function = timer_function; /* 初始化等待队列头 */ init_waitqueue_head(&imx6uirq.r_wait); return 0; } /* * @description : 打开设备 * @param - inode : 传递给驱动的inode * @param - filp : 设备文件,file结构体有个叫做private_data的成员变量 * 一般在open的时候将private_data指向设备结构体。 * @return : 0 成功;其他 失败 */ static int imx6uirq_open(struct inode *inode, struct file *filp) { filp->private_data = &imx6uirq; /* 设置私有数据 */ return 0; } /* * @description : 从设备读取数据 * @param - filp : 要打开的设备文件(文件描述符) * @param - buf : 返回给用户空间的数据缓冲区 * @param - cnt : 要读取的数据长度 * @param - offt : 相对于文件首地址的偏移 * @return : 读取的字节数,如果为负值,表示读取失败 */ static ssize_t imx6uirq_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt) { int ret = 0; unsigned char keyvalue = 0; unsigned char releasekey = 0; struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data; DECLARE_WAITQUEUE(wait, current); /* 定义一个等待队列 */ if(atomic_read(&dev->releasekey) == 0) { /* 没有按键按下 */ add_wait_queue(&dev->r_wait, &wait); /* 将等待队列添加到等待队列头 */ __set_current_state(TASK_INTERRUPTIBLE);/* 设置任务状态 */ schedule(); /* 进行一次任务切换 */ if(signal_pending(current)) { /* 判断是否为信号引起的唤醒 */ ret = -ERESTARTSYS; goto wait_error; } __set_current_state(TASK_RUNNING); /* 将当前任务设置为运行状态 */ remove_wait_queue(&dev->r_wait, &wait); /* 将对应的队列项从等待队列头删除 */ } keyvalue = atomic_read(&dev->keyvalue); releasekey = atomic_read(&dev->releasekey); if (releasekey) { /* 有按键按下 */ if (keyvalue & 0x80) { keyvalue &= ~0x80; ret = copy_to_user(buf, &keyvalue, sizeof(keyvalue)); } else { goto data_error; } atomic_set(&dev->releasekey, 0);/* 按下标志清零 */ } else { goto data_error; } return 0; wait_error: set_current_state(TASK_RUNNING); /* 设置任务为运行态 */ remove_wait_queue(&dev->r_wait, &wait); /* 将等待队列移除 */ return ret; data_error: return -EINVAL; } /* 设备操作函数 */ static struct file_operations imx6uirq_fops = { .owner = THIS_MODULE, .open = imx6uirq_open, .read = imx6uirq_read, }; /* * @description : 驱动入口函数 * @param : 无 * @return : 无 */ static int __init imx6uirq_init(void) { /* 1、构建设备号 */ if (imx6uirq.major) { imx6uirq.devid = MKDEV(imx6uirq.major, 0); register_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT, IMX6UIRQ_NAME); } else { alloc_chrdev_region(&imx6uirq.devid, 0, IMX6UIRQ_CNT, IMX6UIRQ_NAME); imx6uirq.major = MAJOR(imx6uirq.devid); imx6uirq.minor = MINOR(imx6uirq.devid); } /* 2、注册字符设备 */ cdev_init(&imx6uirq.cdev, &imx6uirq_fops); cdev_add(&imx6uirq.cdev, imx6uirq.devid, IMX6UIRQ_CNT); /* 3、创建类 */ imx6uirq.class = class_create(THIS_MODULE, IMX6UIRQ_NAME); if (IS_ERR(imx6uirq.class)) { return PTR_ERR(imx6uirq.class); } /* 4、创建设备 */ imx6uirq.device = device_create(imx6uirq.class, NULL, imx6uirq.devid, NULL, IMX6UIRQ_NAME); if (IS_ERR(imx6uirq.device)) { return PTR_ERR(imx6uirq.device); } /* 5、始化按键 */ atomic_set(&imx6uirq.keyvalue, INVAKEY); atomic_set(&imx6uirq.releasekey, 0); keyio_init(); return 0; } /* * @description : 驱动出口函数 * @param : 无 * @return : 无 */ static void __exit imx6uirq_exit(void) { unsigned i = 0; /* 删除定时器 */ del_timer_sync(&imx6uirq.timer); /* 删除定时器 */ /* 释放中断 */ for (i = 0; i < KEY_NUM; i++) { free_irq(imx6uirq.irqkeydesc[i].irqnum, &imx6uirq); } cdev_del(&imx6uirq.cdev); unregister_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT); device_destroy(imx6uirq.class, imx6uirq.devid); class_destroy(imx6uirq.class); } module_init(imx6uirq_init); module_exit(imx6uirq_exit); MODULE_LICENSE("GPL");
#include "stdio.h" #include "unistd.h" #include "sys/types.h" #include "sys/stat.h" #include "fcntl.h" #include "stdlib.h" #include "string.h" #include "linux/ioctl.h" /* * @description : main主程序 * @param - argc : argv数组元素个数 * @param - argv : 具体参数 * @return : 0 成功;其他 失败 */ int main(int argc, char *argv[]) { int fd; int ret = 0; char *filename; unsigned char data; if (argc != 2) { printf("Error Usage!\r\n"); return -1; } filename = argv[1]; fd = open(filename, O_RDWR); if (fd < 0) { printf("Can't open file %s\r\n", filename); return -1; } while (1) { ret = read(fd, &data, sizeof(data)); if (ret < 0) { /* 数据读取错误或者无效 */ } else { /* 数据读取正确 */ if (data) /* 读取到数据 */ printf("key value = %#X\r\n", data); } } close(fd); } return ret; }
I/O 多路复用一般用于并发式的非阻塞 I/O,I/O 多路复用存在一个非常明显的特征:外部阻塞式,内部监视多路 I/O。
如果用户应用程序以非阻塞的方式访问设备,设备驱动程序就要提供非阻塞的处理方式,也就是轮询。poll、epoll 和 select 可以用于处理轮询,应用程序通过 select、epoll 或 poll 函数来查询设备是否可以操作,如果可以操作的话就从设备读取或者向设备写入数据。当应用程序调用 select、epoll 或 poll 函数的时候设备驱动程序中的 poll 函数就会执行,因此需要在设备驱动程序中编写 poll 函数。
系统调用 select()可用于执行 I/O 多路复用操作,调用 select()会一直阻塞,直到某一个或多个文件描述符成为就绪态(可以读或写)或者超时。其函数原型如下所示:
#include <sys/select.h>
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
函数参数和返回值含义如下:
nfds:所要监视的这三类文件描述集合中,最大文件描述符加 1。
readfds、writefds 和 exceptfds:这三个指针指向描述符集合,这三个参数指明了关心哪些描述符、需要满足哪些条件等等,这三个参数都是 fd_set 类型的,fd_set 类型变量的每一个位都代表了一个文件描述符。readfds 用于监视指定描述符集的读变化,也就是监视这些文件是否可以读取,只要这些集合里面有一个文件可以读取那么 seclect 就会返回一个大于 0 的值表示文件可以读取。如果没有文件可以读取,那么就会根据 timeout 参数来判断是否超时。可以将 readfs设置为 NULL,表示不关心任何文件的读变化。writefds 和 readfs 类似,只是 writefs 用于监视这些文件是否可以进行写操作。exceptfds 用于监视这些文件的异常。
比如我们现在要从一个设备文件中读取数据,那么就可以定义一个 fd_set 变量,这个变量要传递给参数 readfds。当我们定义好一个 fd_set 变量以后可以使用如下所示几个宏进行操作:
void FD_ZERO(fd_set *set)
void FD_SET(int fd, fd_set *set)
void FD_CLR(int fd, fd_set *set)
int FD_ISSET(int fd, fd_set *set)
FD_ZERO 用于将 fd_set 变量的所有位都清零,FD_SET 用于将 fd_set 变量的某个位置 1,也就是向 fd_set 添加一个文件描述符,参数 fd 就是要加入的文件描述符。FD_CLR 用于将 fd_set变量的某个位清零,也就是将一个文件描述符从 fd_set 中删除,参数 fd 就是要删除的文件描述符。FD_ISSET 用于测试一个文件是否属于某个集合,参数 fd 就是要判断的文件描述符。
timeout:超时时间,当我们调用 select 函数等待某些文件描述符可以设置超时时间,超时时间使用结构体 timeval 表示,结构体定义如下所示:
struct timeval {
long tv_sec; /* 秒 */
long tv_usec; /* 微妙 */
};
当 timeout 为 NULL 的时候就表示无限期的等待。
返回值:0,表示的话就表示超时发生,但是没有任何文件描述符可以进行操作;-1,发生错误;其他值,可以进行操作的文件描述符个数。
使用 select 函数对某个设备驱动文件进行读非阻塞访问的操作示例如下所示:
void main(void) { int ret, fd; /* 要监视的文件描述符 */ fd_set readfds; /* 读操作文件描述符集 */ struct timeval timeout; /* 超时结构体 */ fd = open("dev_xxx", O_RDWR | O_NONBLOCK); /* 非阻塞式访问 */ FD_ZERO(&readfds); /* 清除 readfds */ FD_SET(fd, &readfds); /* 将 fd 添加到 readfds 里面 */ /* 构造超时时间 */ timeout.tv_sec = 0; timeout.tv_usec = 500000; /* 500ms */ ret = select(fd + 1, &readfds, NULL, NULL, &timeout); switch (ret) { case 0: /* 超时 */ printf("timeout!\r\n"); break; case -1: /* 错误 */ printf("error!\r\n"); break; default: /* 可以读取数据 */ if(FD_ISSET(fd, &readfds)) { /* 判断是否为 fd 文件描述符 */ /* 使用 read 函数读取数据 */ } break; } }
在单个线程中,select 函数能够监视的文件描述符数量有最大的限制,一般为 1024,可以修改内核将监视的文件描述符数量改大,但是这样会降低效率!这个时候就可以使用 poll 函数,poll 函数本质上和 select 没有太大的差别,但是 poll 函数没有最大文件描述符限制,Linux 应用程序中 poll 函数原型如下所示:
int poll(struct pollfd *fds,
nfds_t nfds,
int timeout)
函数参数和返回值含义如下:
fds:要监视的文件描述符集合以及要监视的事件,为一个数组,数组元素都是结构体 pollfd类型的,pollfd 结构体如下所示:
struct pollfd {
int fd; /* 文件描述符 */
short events; /* 请求的事件 */
short revents; /* 返回的事件 */
};
fd 是要监视的文件描述符,如果 fd 无效的话那么 events 监视事件也就无效,并且 revents返回 0。events 是要监视的事件,可监视的事件类型如下所示:
POLLIN 有数据可以读取。
POLLPRI 有紧急的数据需要读取。
POLLOUT 可以写数据。
POLLERR 指定的文件描述符发生错误。
POLLHUP 指定的文件描述符挂起。
POLLNVAL 无效的请求。
POLLRDNORM 等同于 POLLIN
revents 是返回参数,也就是返回的事件,由 Linux 内核设置具体的返回事件。
nfds:poll 函数要监视的文件描述符数量。
timeout:超时时间,单位为 ms。
返回值:返回 revents 域中不为 0 的 pollfd 结构体个数,也就是发生事件或错误的文件描述符数量;0,超时;-1,发生错误,并且设置 errno 为错误类型。
使用 poll 函数对某个设备驱动文件进行读非阻塞访问的操作示例如下所示:
void main(void) { int ret; int fd; /* 要监视的文件描述符 */ struct pollfd fds; fd = open(filename, O_RDWR | O_NONBLOCK); /* 非阻塞式访问 */ /* 构造结构体 */ fds.fd = fd; fds.events = POLLIN; /* 监视数据是否可以读取 */ ret = poll(&fds, 1, 500); /* 轮询文件是否可操作,超时 500ms */ if (ret) { /* 数据有效 */ ...... /* 读取数据 */ ...... } else if (ret == 0) { /* 超时 */ ...... } else if (ret < 0) { /* 错误 */ ...... } }
传统的 selcet 和 poll 函数都会随着所监听的 fd 数量的增加,出现效率低下的问题,而且poll 函数每次必须遍历所有的描述符来检查就绪的描述符,这个过程很浪费时间。为此,epoll应运而生,epoll 就是为处理大并发而准备的,一般常常在网络编程中使用 epoll 函数。应用程序需要先使用 epoll_create 函数创建一个 epoll 句柄,epoll_create 函数原型如下:
int epoll_create(int size)
函数参数和返回值含义如下:
size:从 Linux2.6.8 开始此参数已经没有意义了,随便填写一个大于 0 的值就可以。
返回值:epoll 句柄,如果为-1 的话表示创建失败。
epoll 句柄创建成功以后使用 epoll_ctl 函数向其中添加要监视的文件描述符以及监视的事件,epoll_ctl 函数原型如下所示:
int epoll_ctl(int epfd,
int op,
int fd,
struct epoll_event *event)
函数参数和返回值含义如下:
epfd:要操作的 epoll 句柄,也就是使用 epoll_create 函数创建的 epoll 句柄。
op:表示要对 epfd(epoll 句柄)进行的操作,可以设置为:
EPOLL_CTL_ADD 向 epfd 添加文件参数 fd 表示的描述符。
EPOLL_CTL_MOD 修改参数 fd 的 event 事件。
EPOLL_CTL_DEL 从 epfd 中删除 fd 描述符。
fd:要监视的文件描述符。
event:要监视的事件类型,为 epoll_event 结构体类型指针,epoll_event 结构体类型如下所示:
struct epoll_event {
uint32_t events; /* epoll 事件 */
epoll_data_t data; /* 用户数据 */
};
结构体 epoll_event 的 events 成员变量表示要监视的事件,可选的事件如下所示:
EPOLLIN 有数据可以读取。
EPOLLOUT 可以写数据。
EPOLLPRI 有紧急的数据需要读取。
EPOLLERR 指定的文件描述符发生错误。
EPOLLHUP 指定的文件描述符挂起。
EPOLLET 设置 epoll 为边沿触发,默认触发模式为水平触发。
EPOLLONESHOT 一次性的监视,当监视完成以后还需要再次监视某个 fd,那么就需要将fd 重新添加到 epoll 里面。
上面这些事件可以进行“或”操作,也就是说可以设置监视多个事件。
返回值:0,成功;-1,失败,并且设置 errno 的值为相应的错误码。
一切都设置好以后应用程序就可以通过 epoll_wait 函数来等待事件的发生,类似 select 函数。epoll_wait 函数原型如下所示:
int epoll_wait(int epfd,
struct epoll_event *events,
int maxevents,
int timeout)
函数参数和返回值含义如下:
epfd:要等待的 epoll。
events:指向 epoll_event 结构体的数组,当有事件发生的时候 Linux 内核会填写 events,调用者可以根据 events 判断发生了哪些事件。
maxevents:events 数组大小,必须大于 0。
timeout:超时时间,单位为 ms。
返回值:0,超时;-1,错误;其他值,准备就绪的文件描述符数量。
epoll 更多的是用在大规模的并发服务器上。
当应用程序调用 select 或 poll 函数来对驱动程序进行非阻塞访问的时候,驱动程序file_operations 操作集中的 poll 函数就会执行。所以驱动程序的编写者需要提供对应的 poll 函数,poll 函数原型如下所示:
unsigned int (*poll) (struct file *filp, struct poll_table_struct *wait)
函数参数和返回值含义如下:
filp:要打开的设备文件(文件描述符)。
wait:结构体 poll_table_struct 类型指针,由应用程序传递进来的。一般将此参数传递给poll_wait 函数。
返回值:向应用程序返回设备或者资源状态,可以返回的资源状态如下:
POLLIN 有数据可以读取。
POLLPRI 有紧急的数据需要读取。
POLLOUT 可以写数据。
POLLERR 指定的文件描述符发生错误。
POLLHUP 指定的文件描述符挂起。
POLLNVAL 无效的请求。
POLLRDNORM 等同于 POLLIN,普通数据可读
我们需要在驱动程序的 poll 函数中调用 poll_wait 函数,poll_wait 函数不会引起阻塞,只是将应用程序添加到 poll_table 中,poll_wait 函数原型如下:
void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)
参数 wait_address 是要添加到 poll_table 中的等待队列头,参数 p 就是 poll_table,就是file_operations 中 poll 函数的 wait 参数。
#include <linux/types.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/ide.h> #include <linux/init.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/gpio.h> #include <linux/cdev.h> #include <linux/device.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_gpio.h> #include <linux/semaphore.h> #include <linux/timer.h> #include <linux/of_irq.h> #include <linux/irq.h> #include <linux/wait.h> #include <linux/poll.h> #include <asm/mach/map.h> #include <asm/uaccess.h> #include <asm/io.h> #define IMX6UIRQ_CNT 1 /* 设备号个数 */ #define IMX6UIRQ_NAME "noblockio" /* 名字 */ #define KEY0VALUE 0X01 /* KEY0按键值 */ #define INVAKEY 0XFF /* 无效的按键值 */ #define KEY_NUM 1 /* 按键数量 */ /* 中断IO描述结构体 */ struct irq_keydesc { int gpio; /* gpio */ int irqnum; /* 中断号 */ unsigned char value; /* 按键对应的键值 */ char name[10]; /* 名字 */ irqreturn_t (*handler)(int, void *); /* 中断服务函数 */ }; /* imx6uirq设备结构体 */ struct imx6uirq_dev{ dev_t devid; /* 设备号 */ struct cdev cdev; /* cdev */ struct class *class; /* 类 */ struct device *device; /* 设备 */ int major; /* 主设备号 */ int minor; /* 次设备号 */ struct device_node *nd; /* 设备节点 */ atomic_t keyvalue; /* 有效的按键键值 */ atomic_t releasekey; /* 标记是否完成一次完成的按键,包括按下和释放 */ struct timer_list timer;/* 定义一个定时器*/ struct irq_keydesc irqkeydesc[KEY_NUM]; /* 按键init述数组 */ unsigned char curkeynum; /* 当前init按键号 */ wait_queue_head_t r_wait; /* 读等待队列头 */ }; struct imx6uirq_dev imx6uirq; /* irq设备 */ /* @description : 中断服务函数,开启定时器 * 定时器用于按键消抖。 * @param - irq : 中断号 * @param - dev_id : 设备结构。 * @return : 中断执行结果 */ static irqreturn_t key0_handler(int irq, void *dev_id) { struct imx6uirq_dev *dev = (struct imx6uirq_dev*)dev_id; dev->curkeynum = 0; dev->timer.data = (volatile long)dev_id; mod_timer(&dev->timer, jiffies + msecs_to_jiffies(10)); /* 10ms定时 */ return IRQ_RETVAL(IRQ_HANDLED); } /* @description : 定时器服务函数,用于按键消抖,定时器到了以后 * 再次读取按键值,如果按键还是处于按下状态就表示按键有效。 * @param - arg : 设备结构变量 * @return : 无 */ void timer_function(unsigned long arg) { unsigned char value; unsigned char num; struct irq_keydesc *keydesc; struct imx6uirq_dev *dev = (struct imx6uirq_dev *)arg; num = dev->curkeynum; keydesc = &dev->irqkeydesc[num]; value = gpio_get_value(keydesc->gpio); /* 读取IO值 */ if(value == 0){ /* 按下按键 */ atomic_set(&dev->keyvalue, keydesc->value); } else{ /* 按键松开 */ atomic_set(&dev->keyvalue, 0x80 | keydesc->value); atomic_set(&dev->releasekey, 1); /* 标记松开按键,即完成一次完整的按键过程 */ } /* 唤醒进程 */ if(atomic_read(&dev->releasekey)) { /* 完成一次按键过程 */ /* wake_up(&dev->r_wait); */ wake_up_interruptible(&dev->r_wait); } } /* * @description : 按键IO初始化 * @param : 无 * @return : 无 */ static int keyio_init(void) { unsigned char i = 0; char name[10]; int ret = 0; imx6uirq.nd = of_find_node_by_path("/key"); if (imx6uirq.nd== NULL){ printk("key node not find!\r\n"); return -EINVAL; } /* 提取GPIO */ for (i = 0; i < KEY_NUM; i++) { imx6uirq.irqkeydesc[i].gpio = of_get_named_gpio(imx6uirq.nd ,"key-gpio", i); if (imx6uirq.irqkeydesc[i].gpio < 0) { printk("can't get key%d\r\n", i); } } /* 初始化key所使用的IO,并且设置成中断模式 */ for (i = 0; i < KEY_NUM; i++) { memset(imx6uirq.irqkeydesc[i].name, 0, sizeof(name)); /* 缓冲区清零 */ sprintf(imx6uirq.irqkeydesc[i].name, "KEY%d", i); /* 组合名字 */ gpio_request(imx6uirq.irqkeydesc[i].gpio, name); gpio_direction_input(imx6uirq.irqkeydesc[i].gpio); imx6uirq.irqkeydesc[i].irqnum = irq_of_parse_and_map(imx6uirq.nd, i); #if 0 imx6uirq.irqkeydesc[i].irqnum = gpio_to_irq(imx6uirq.irqkeydesc[i].gpio); #endif } /* 申请中断 */ imx6uirq.irqkeydesc[0].handler = key0_handler; imx6uirq.irqkeydesc[0].value = KEY0VALUE; for (i = 0; i < KEY_NUM; i++) { ret = request_irq(imx6uirq.irqkeydesc[i].irqnum, imx6uirq.irqkeydesc[i].handler, IRQF_TRIGGER_FALLING|IRQF_TRIGGER_RISING, imx6uirq.irqkeydesc[i].name, &imx6uirq); if(ret < 0){ printk("irq %d request failed!\r\n", imx6uirq.irqkeydesc[i].irqnum); return -EFAULT; } } /* 创建定时器 */ init_timer(&imx6uirq.timer); imx6uirq.timer.function = timer_function; /* 初始化等待队列头 */ init_waitqueue_head(&imx6uirq.r_wait); return 0; } /* * @description : 打开设备 * @param - inode : 传递给驱动的inode * @param - filp : 设备文件,file结构体有个叫做private_data的成员变量 * 一般在open的时候将private_data指向设备结构体。 * @return : 0 成功;其他 失败 */ static int imx6uirq_open(struct inode *inode, struct file *filp) { filp->private_data = &imx6uirq; /* 设置私有数据 */ return 0; } /* * @description : 从设备读取数据 * @param - filp : 要打开的设备文件(文件描述符) * @param - buf : 返回给用户空间的数据缓冲区 * @param - cnt : 要读取的数据长度 * @param - offt : 相对于文件首地址的偏移 * @return : 读取的字节数,如果为负值,表示读取失败 */ static ssize_t imx6uirq_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt) { int ret = 0; unsigned char keyvalue = 0; unsigned char releasekey = 0; struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data; if (filp->f_flags & O_NONBLOCK) { /* 非阻塞访问 */ if(atomic_read(&dev->releasekey) == 0) /* 没有按键按下,返回-EAGAIN */ return -EAGAIN; } else { /* 阻塞访问 */ /* 加入等待队列,等待被唤醒,也就是有按键按下 */ ret = wait_event_interruptible(dev->r_wait, atomic_read(&dev->releasekey)); if (ret) { goto wait_error; } } keyvalue = atomic_read(&dev->keyvalue); releasekey = atomic_read(&dev->releasekey); if (releasekey) { /* 有按键按下 */ if (keyvalue & 0x80) { keyvalue &= ~0x80; ret = copy_to_user(buf, &keyvalue, sizeof(keyvalue)); } else { goto data_error; } atomic_set(&dev->releasekey, 0);/* 按下标志清零 */ } else { goto data_error; } return 0; wait_error: return ret; data_error: return -EINVAL; } /* * @description : poll函数,用于处理非阻塞访问 * @param - filp : 要打开的设备文件(文件描述符) * @param - wait : 等待列表(poll_table) * @return : 设备或者资源状态, */ unsigned int imx6uirq_poll(struct file *filp, struct poll_table_struct *wait) { unsigned int mask = 0; struct imx6uirq_dev *dev = (struct imx6uirq_dev *)filp->private_data; poll_wait(filp, &dev->r_wait, wait); /* 将等待队列头添加到poll_table中 */ if(atomic_read(&dev->releasekey)) { /* 按键按下 */ mask = POLLIN | POLLRDNORM; /* 返回PLLIN */ } return mask; } /* 设备操作函数 */ static struct file_operations imx6uirq_fops = { .owner = THIS_MODULE, .open = imx6uirq_open, .read = imx6uirq_read, .poll = imx6uirq_poll, }; /* * @description : 驱动入口函数 * @param : 无 * @return : 无 */ static int __init imx6uirq_init(void) { /* 1、构建设备号 */ if (imx6uirq.major) { imx6uirq.devid = MKDEV(imx6uirq.major, 0); register_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT, IMX6UIRQ_NAME); } else { alloc_chrdev_region(&imx6uirq.devid, 0, IMX6UIRQ_CNT, IMX6UIRQ_NAME); imx6uirq.major = MAJOR(imx6uirq.devid); imx6uirq.minor = MINOR(imx6uirq.devid); } /* 2、注册字符设备 */ cdev_init(&imx6uirq.cdev, &imx6uirq_fops); cdev_add(&imx6uirq.cdev, imx6uirq.devid, IMX6UIRQ_CNT); /* 3、创建类 */ imx6uirq.class = class_create(THIS_MODULE, IMX6UIRQ_NAME); if (IS_ERR(imx6uirq.class)) { return PTR_ERR(imx6uirq.class); } /* 4、创建设备 */ imx6uirq.device = device_create(imx6uirq.class, NULL, imx6uirq.devid, NULL, IMX6UIRQ_NAME); if (IS_ERR(imx6uirq.device)) { return PTR_ERR(imx6uirq.device); } /* 5、始化按键 */ atomic_set(&imx6uirq.keyvalue, INVAKEY); atomic_set(&imx6uirq.releasekey, 0); keyio_init(); return 0; } /* * @description : 驱动出口函数 * @param : 无 * @return : 无 */ static void __exit imx6uirq_exit(void) { unsigned i = 0; /* 删除定时器 */ del_timer_sync(&imx6uirq.timer); /* 删除定时器 */ /* 释放中断 */ for (i = 0; i < KEY_NUM; i++) { free_irq(imx6uirq.irqkeydesc[i].irqnum, &imx6uirq); } cdev_del(&imx6uirq.cdev); unregister_chrdev_region(imx6uirq.devid, IMX6UIRQ_CNT); device_destroy(imx6uirq.class, imx6uirq.devid); class_destroy(imx6uirq.class); } module_init(imx6uirq_init); module_exit(imx6uirq_exit); MODULE_LICENSE("GPL");
#include "stdio.h" #include "unistd.h" #include "sys/types.h" #include "sys/stat.h" #include "fcntl.h" #include "stdlib.h" #include "string.h" #include "poll.h" #include "sys/select.h" #include "sys/time.h" #include "linux/ioctl.h" /* * @description : main主程序 * @param - argc : argv数组元素个数 * @param - argv : 具体参数 * @return : 0 成功;其他 失败 */ int main(int argc, char *argv[]) { int fd; int ret = 0; char *filename; struct pollfd fds; fd_set readfds; struct timeval timeout; unsigned char data; if (argc != 2) { printf("Error Usage!\r\n"); return -1; } filename = argv[1]; fd = open(filename, O_RDWR | O_NONBLOCK); /* 非阻塞访问 */ if (fd < 0) { printf("Can't open file %s\r\n", filename); return -1; } #if 0 /* 构造结构体 */ fds.fd = fd; fds.events = POLLIN; while (1) { ret = poll(&fds, 1, 500); if (ret) { /* 数据有效 */ ret = read(fd, &data, sizeof(data)); if(ret < 0) { /* 读取错误 */ } else { if(data) printf("key value = %d \r\n", data); } } else if (ret == 0) { /* 超时 */ /* 用户自定义超时处理 */ } else if (ret < 0) { /* 错误 */ /* 用户自定义错误处理 */ } } #endif while (1) { FD_ZERO(&readfds); FD_SET(fd, &readfds); /* 构造超时时间 */ timeout.tv_sec = 0; timeout.tv_usec = 500000; /* 500ms */ ret = select(fd + 1, &readfds, NULL, NULL, &timeout); switch (ret) { case 0: /* 超时 */ /* 用户自定义超时处理 */ break; case -1: /* 错误 */ /* 用户自定义错误处理 */ break; default: /* 可以读取数据 */ if(FD_ISSET(fd, &readfds)) { ret = read(fd, &data, sizeof(data)); if (ret < 0) { /* 读取错误 */ } else { if (data) printf("key value=%d\r\n", data); } } break; } } close(fd); return ret; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。