赞
踩
- 作者:耳边的火
- 链接:https://www.jianshu.com/p/c8c789ff5570
- 来源:简书
在Flink中,使用event-time模式时,默认提供的window有TumblingEventTimeWindows,SlidingEventTimeWindows,EventTimeSessionWindow等,其中这些是属于window operator中的一部分,称作 window assigner。window operator包含四个组件,除了 window assigner外,还包括 trigger , evictor, window process。其作用分别如下:
window assigner 指明数据流中的数据属于哪个window
trigger 指明在哪些条件下触发window计算,基于处理数据时的时间以及事件的特定属性、
evictor 可选组件,在window执行计算前或后,将window中的数据移除,如使用globalWindow时,由于该window的默认trigger为永不触发,所以既需要实现自定义trigger,也需要实现evictor,移除部分已经计算完毕的数据。
window process flink默认提供的有 ReduceFunction,AggragateFunction.还可以自定义实现 windowProcessFunction
而上述TumblingEventTimeWindows,SlidingEventTimeWindows,EventTimeSessionWindow三个默认提供的window operator中,都提供了默认的trigger,因此我们在初次接触flink,使用以上三个方法时,没有写trigger,直接写window process,如 .reduce()。这是因为这三个window中的getDefaultTrigger()方法使用的是EventTimeTrigger,也就是它给我们提供了默认的trigger。
- @Override
- public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
- return EventTimeTrigger.create();
- }
而我们知道,在event-time模式中,window的计算是在watermark到达后再执行计算,watermark在计算延迟与结果的完整性之间提供了一个权衡,flink也提供了其他机制来处理迟到数据。所以,我们来看看EventTimeTrigger中是如何实现这样的逻辑的:
- @Override
- public TriggerResult onElement(Object element, long timestamp, TimeWindow window, TriggerContext ctx) throws Exception {
- if (window.maxTimestamp() <= ctx.getCurrentWatermark()) {
- // if the watermark is already past the window fire immediately
- return TriggerResult.FIRE;
- } else {
- ctx.registerEventTimeTimer(window.maxTimestamp());
- return TriggerResult.CONTINUE;
- }
- }
-
-
- @Override
- public TriggerResult onEventTime(long time, TimeWindow window, TriggerContext ctx) {
- return time == window.maxTimestamp() ?
- TriggerResult.FIRE :
- TriggerResult.CONTINUE;
- }
-
-
此处,仅贴出两个相关的方法,onElement以及onEventTime方法。其中onElement方法在每次数据进入该window时会触发,而onEventTime是在之前注册的eventTime回调函数到达时间时,进行触发。需要注意的是,根据Trigger的接口,onElement方法中的timestamp参数,指的是处理时的机器时间,如下:
- /**
- * Called for every element that gets added to a pane. The result of this will determine
- * whether the pane is evaluated to emit results.
- *
- * @param element The element that arrived.
- * @param timestamp The timestamp of the element that arrived.
- * @param window The window to which the element is being added.
- * @param ctx A context object that can be used to register timer callbacks.
- */
- public abstract TriggerResult onElement(T element, long timestamp, W window, TriggerContext ctx) throws Exception;
-
-
修改内容:此处按照注释的理解好像是说的是机器时间,但是跟进代码,在 WindowOperator.Context.onElement 方法中,写明了:
-
-
- public TriggerResult onElement(StreamRecord<IN> element) throws Exception {
- return trigger.onElement(element.getValue(), element.getTimestamp(), window, this);
- }
- 而 onEventTime方法中的 timestamp 参数,则是指注册回调函数时写入的 timestamp 数值。下面详细看一下,EventTimeTrigger中的onElement方法:@Override
- public TriggerResult onElement(Object element, long timestamp, TimeWindow window, TriggerContext ctx) throws Exception {
- if (window.maxTimestamp() <= ctx.getCurrentWatermark()) {
- // if the watermark is already past the window fire immediately
- return TriggerResult.FIRE;
- } else {
- ctx.registerEventTimeTimer(window.maxTimestamp());
- return TriggerResult.CONTINUE;
- }
- }
我们假设watermark使用默认值,200ms产生一个,为了简便,我们假设第二个窗口在第一个窗口结束后,立即有第一个数据流入,按照时间先后顺序依次套入上面的代码,看一下执行结果:第一种情况:watermark不处理迟到数据,其时间戳与数据的时间戳相同。
window.maxTimestamp()指的是当前窗口的最大时间戳的数值,而ctx.getCurrentWatermark()此时指的是window上下文所接收到的,最新到达的watermark,该watermark触发了上一个窗口的计算。此时新窗口尽管还未填满,仅有一个数据,但是其最大时间边界已经确定,一般来说要比此时的watermark的值要大。
因此不入if语句,而进入else语句。
else语句会注册一个回调函数,当未来某个watermark的时间戳大于该trigger的注册时间时,就会触发trigger,执行该trigger所在的window operator的window process进行计算。
每进入一个新数据,就会注册一遍这个回调函数。但是由于trigger会添加到set集合中,因此重复添加相同的trigger不会真的注册重复的trigger。详见:WindowOperator.registerEventTimeTimer() -> HeapInternalTimerService.registerEventTimeTimer -> InternalTimer.equals()
200ms后,新的watermark跟随新的数据到达,新的数据进入该window,再次判断,仍然进入else语句,新的watermark的时间戳没有超过window.maxTimestamp,不会触发trigger,执行计算。
如此持续,直到一个时间戳大于等于window.maxTimestamp的事件到达并跟随着watermark。假设到达的数据时间戳恰好为window.maxTimestamp,也就是该window理论上所能容纳的最大的时间戳。此时watermark有两种情况,一为紧跟着数据到达,二为最多等待200ms后才到达。不论哪种情况,都不会在此时进入onElement方法了,watermark后没有新的数据进入window,就不会走该方法。而是会触发时间小于该watermark的所有trigger,就会触发该window执行计算。
那么onElement方法中的if条件什么时候进入呢?难道是处理迟到数据用的?,我们看一下第二种情况,即:watermark处理5秒内的延迟数据
第一个数据进入新的window,但此时上一个window还未计算,因为watermark处理5秒内延迟,此时window的上下文还未收到大于上一个window的maxTimestamp的watermark。因此上一个window还未执行,在等待迟到数据。
假设在新的window处理了4.9秒后,来了个新数据,该数据从时间戳上来看,应该属于上一个window,因此window assigner将其放入上一个window中,执行onElement方法,但是此时才过了4.9秒而已,还未到第5秒,也就是当前window的上下文保存的watermark的时间戳,还未大于上一个window的maxTimestamp,(但是要注意,windwo上下文中保存的watermark是200ms增长一次的,因为watermark就是200ms产生一次,但是由于处理5秒内的迟到数据,因此即便4.9秒内,watermark不断增长,但是仍未能触发上一个window的trigger),在onElement方法中,还是不会进入if语句,仍然是else语句,待5秒过后,新的watermark到达,其时间戳大于等于上一个window的maxTimestamp,才会触发trigger,执行上一个window的计算。
因此,在watermark处理迟到数据情境下,我们看到确实是处理了迟到数据,但是并没有走if条件。
那if条件存在的意义是什么呢?
我的理解是Flink在处理迟到数据时,watermark只是其中一个选择,它只是权衡了结果完整性与延迟。通过上面的例子也可以看出,假设这个系统的数据真的最多延迟5秒,使用watermark后,确实能处理5秒内延迟的数据,保证了结果的准确性,但是window在5秒后才触发执行,系统就有最少5秒的延迟。
但是,现实世界的情况更加复杂,我们无法预估系统的数据是否真的最多迟到5秒。因此flink还提供了其他处理迟到数据的策略。现在还没有阅读到这一部分内容,不过我估计onElement方法中的if条件分支就是为其提供的。
当window在watermark触发其计算后,该回调函数就从set集合中移除了。但是后面若来了比5秒还要延迟的数据,如迟到1分钟的数据。当我们选择了flink的其他处理迟到数据的策略后,window assginer将该迟到了1分钟的数据,正确的放入已经触发了计算,得出了结果的window中,执行onElement方法,此时,window.maxTimestamp肯定是小于ctx.currentWatermark的,会再次触发该旧的窗口执行计算,保证了结果的完整性。
------------------------ 2018/12/12 更新 ---------------------------
今天看了 WindowOperator 类,明白了if条件确实是为迟到数据提供的,以下着重分析 WindowOperator 类中的 processElement() 方法,该方法大致逻辑为:在每个元素进入时,使用 windowAssigner 指定该元素属于哪个或者哪几个window(如,slidingWindow,同一个元素属于多个window),然后每个window都执行以下逻辑:
首先分析,该元素属于的window是否已经过期了,如果程序没有指定处理迟到数据的策略,则迟到数据进入后就会被判定为该window已失效,该迟到数据不处理,交由GC慢慢回收
如果window还有效,则根据该window获取该window的状态,将新进入的元素写入该window的状态,window就是这样在状态中缓存数据的,用于后面 processWindowFunction 处理 window 的数据。
根据 key 与 window 找到相应的 trigger,调用 trigger 的 onElement 方法,如果此时这个数据是一个迟到的数据,则可以进入上面所说的if条件,直接出发trigger
根据trigger的结果,执行相应逻辑
注册该window的失效回调函数
下面贴上WindowOperator中 processElement() 方法的相关代码:
- for (W window: elementWindows) {
-
-
- // drop if the window is already late
- if (isWindowLate(window)) {
- continue;
- }
- isSkippedElement = false;
-
-
- windowState.setCurrentNamespace(window);
- windowState.add(element.getValue());
-
-
- triggerContext.key = key;
- triggerContext.window = window;
-
-
- TriggerResult triggerResult = triggerContext.onElement(element);
-
-
- if (triggerResult.isFire()) {
- ACC contents = windowState.get();
- if (contents == null) {
- continue;
- }
- emitWindowContents(window, contents);
- }
-
-
- if (triggerResult.isPurge()) {
- windowState.clear();
- }
- registerCleanupTimer(window);
- }
注意的是,在 processElement 方法内,会先判断 windowAssigner 是否是 MergingWindowAssigner,我们常用的 TumblingEventTimeWindows 是正常的 windowAssigner 接口,而 EventTimeSessionWindows 是 MergingWindowAssigner。因此这里贴的代码是针对 windowAssigner 的。
其中 isWindowLate(window) 方法,其判断条件是 该window的最大时间戳加上设置允许的最大迟到时间与当前watermark的比较。也就是 window.maxTimestamp() + allowedLateness <= watermark 。若小于,则window过期,需要删除window对象,删除window状态,触发为给window注册的onEventTime回调函数。
再再提醒注意一点:
在EventTimeTrigger中返回的triggerResult要么是 continue 要么是 fire,就是没有 purge 或者 fire_and_purge。现在看来,也是为了配合flink提供的 allowedLateness 处理迟到数据的策略。这是因为,如果trigger的结果是 purge 或者 fire_and_purge,就会在 WindowOperator 中触发 windowState.clear() 动作,这样的话,真正迟到的数据加入该window后,该window的状态已经被删除,无法更新了。但是 windowState.clear() 是为了清除该 window 的状态的,如果trigger的状态不指定为 purge 或者 fire_and_purge,该window的状态会不会删除?什么时候删除?若不删除岂不是会造成内存问题?答案就在之前说的,当判定该window过期,需要删除时,会同时删除window的状态,可以参考 WindowOperator 中的 clearAllState() 方法。
扫码关注我们
我知道你“在看”哟~
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。