当前位置:   article > 正文

不怕YOLOv10高歌猛进,我有YOLOv8稳扎稳打_yolov10 和 yolov8

yolov10 和 yolov8

在这里插入图片描述

YOLOv10 出来有几天时间了,这次我没有选择第一时间出文章解析,如此频繁的发布数字版本的 YOLO 着实让人头疼,虽然数字的更新并非旧版技术的过时, 但是这肯定会让很多在校同学增加很多焦虑情绪。这里还是请大家辩证看待。

v10 这次的改动不是很多,甚至很多新手同学都觉得没改动什么。网络结构上改动确实不多,主要贡献还是 NMS free,这个点并不体现在模型的 yaml 文件里,所以只看 yaml 也看不出什么,从效果角度讲 v10 就是比 v8 强,这是没法狡辩的。

在这里插入图片描述

值得注意的是 v10 用的依然是 yolov8 的框架,也就是说到目前为止,YOLOv5/v7/v9 都是一个框架,YOLOv8/v10 是一个框架,并且这两套框架都是 ultralytics 团队在维护的,这也验证了前几年(22年)我写的一段文字,一个好的基线框架是至关重要的,一个超级活跃的开源项目也是可遇不可求的,它带给你的帮助是无法估量的。

那这意味什么呢,你 v5/v7/v9 会玩一个就代表三个全会,v8/v10 会玩一个就代表两个全会;并且我们可以无脑将 v10 的改进点放到 v8 里,所以大家不必纠结 v8 旧于 v10 ,以后的任何数字版本 yolo ,对你们来说不过是一个改进点而已。

如何选择一个合适的基线?

  1. 从硬件性能角度考虑
    即考虑自己的硬件条件,本身是否具备训练一个大模型的硬件环境,比如显卡性能或者显存很小,那么就无法训练参数量过大的模型。
  2. 从训练成本角度考虑
    即考虑自身的资金成本或者时间成本,如果实验室没有GPU,那么就要使用云平台,通常实验都会有几十次,所以资金成本很大,这时可以考虑使用参数量较小的基线,这样训练时间快,对硬件的要求也没有那么高。
  3. 从评价指标角度考虑
    我们通常在发论文时都会加上一个应用场景,加场景的作用就是满足实际的使用,我们知道理想情况下,模型的精度和参数量是成正比的,假如满足实际使用要求的mAP值是0.9,YOLOv5s的mAP只有0.6,那么无论你怎样优化,模型也很难达到要求,所以这时候就要考虑使用一个更大的基线,比如5L\X等。
  4. 从代码开源角度考虑
    现在开源工作做得很好,有时候我们自己忙了一个月编写的代码甚至不如GitHub上一个开源的项目,所以在选择优化算法时要考虑自身的代码水平,即这个算法的有没有开源的源代码,这个代码是否清清晰易读,是否方便改进。

为什么我总是推荐大家用 yolov8 呢,因为这个框架真的真的很好用,对小白也很友好,不管是论文还是工作,这个框架我认为真的值得学习。

目前这个框架支持 分类、检测、分割、关键点、开集目标检测、未来会加入深度估计等任务,学会了对自己帮助很大。

下面简单回顾下论文,并且对 v10 的三个模块加到 v8 做个简单教程。


论文回顾


下面快速回顾下原始论文,这是我借助 Ai Drive 总结的,基本就是这些东西,如果对模块效果感兴趣请大家直接看论文的消融实验。

引言

在过去的几年中,YOLO系列(You Only Look Once)模型凭借其在计算成本和检测性能之间的卓越平衡,已经成为实时目标检测领域的主流。近日,由清华大学团队提出的最新论文《YOLOv10: Real-Time End-to-End Object Detection》进一步推进了YOLO模型的性能与效率边界。本文将详细介绍这篇论文的创新点、主要贡献及其实验结果。

论文背景

YOLO模型的检测管道主要包括模型前向过程和非极大值抑制(NMS)后处理。然而,NMS的依赖使得YOLO模型在端到端部署中存在一定的效率瓶颈。此外,YOLO模型各组件的设计也缺乏全面细致的优化,导致计算冗余明显,限制了模型的性能提升。

主要贡献

这篇论文针对以上问题,提出了两个关键创新点:一致的双重分配策略和整体效率-准确性驱动的模型设计策略。
在这里插入图片描述
在这里插入图片描述

  1. 一致的双重分配策略

    • 双标签分配:传统的YOLO模型在训练时通常采用一对多的标签分配策略,这虽然能带来丰富的监督信号,但也需要在推理时依赖NMS。为解决这一问题,论文提出了一种双标签分配策略,通过同时采用一对多和一对一的标签分配,既保证了训练时的丰富监督信号,又消除了推理时对NMS的依赖。
    • 一致匹配度量:通过采用统一的匹配度量,优化一对一分配头和一对多分配头,使两者能够一致和谐地进行优化,从而在推理时提供更高质量的样本。
  2. 整体效率-准确性驱动的模型设计策略

    • 轻量级分类头:通过简化分类头的架构,减少计算开销,同时不显著影响性能。
    • 空间通道解耦下采样:提出了一种新的下采样方法,先进行通道维度的变换,然后进行空间维度的下采样,最大程度地保留信息。
    • 秩引导块设计:通过分析各阶段的内在秩,提出紧凑倒置块结构(CIB),并采用秩引导的块分配策略,以适应不同阶段的冗余情况,从而提高模型的效率。
  3. 大核卷积和部分自注意力模块(PSA)

    • 大核卷积:在深层阶段采用大核卷积,扩大感受野,增强模型能力。
    • 部分自注意力模块:通过将特征分为两部分,仅对一部分应用多头自注意力机制(MHSA),在提升模型性能的同时降低计算复杂度。

实验结果

在这里插入图片描述

论文通过在COCO数据集上的大量实验,验证了YOLOv10在各个模型规模上的优越性能和效率:

  • 高效的参数利用:YOLOv10-L和YOLOv10-X分别比YOLOv8-L和YOLOv8-X减少1.8倍和2.3倍的参数,同时在相同或更好的性能下实现了更低的延迟。
  • 先进的性能和延迟权衡:YOLOv10在标准目标检测基准上显著优于以前的最先进模型。例如,YOLOv10-S比RT-DETR-R18快1.8倍,参数和FLOPs减少2.8倍。

代码改动

如果将 v10 全部的改动合并到 v8 的主分支,大概到 14python 文件和 6yaml 文件,详细的代码大家直接看这个 PR 就行了,https://github.com/ultralytics/ultralytics/pull/13113/files

由于我对大家比较了解,就不给大家展示怎么改这 14 个文件了,用 Ultralytics 框架的同学等待官方合并就好了。咱们直接改除 NMS free 外的其他贡献点,有三个模块,大家自行拆解使用 :

  1. 空间通道解耦下采样 SCDown
  2. 紧凑倒置块结构 CIB
  3. 大核卷积和部分自注意力模块 PSA

第一步

ultralytics/ultralytics/nn/modules/block.py 添加如下代码:

from ultralytics.utils.torch_utils import fuse_conv_and_bn


class RepVGGDW(torch.nn.Module):
    """RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture."""

    def __init__(self, ed) -> None:
        super().__init__()
        self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
        self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
        self.dim = ed
        self.act = nn.SiLU()

    def forward(self, x):
        """
        Performs a forward pass of the RepVGGDW block.
        Args:
            x (torch.Tensor): Input tensor.
        Returns:
            (torch.Tensor): Output tensor after applying the depth wise separable convolution.
        """
        return self.act(self.conv(x) + self.conv1(x))

    def forward_fuse(self, x):
        """
        Performs a forward pass of the RepVGGDW block without fusing the convolutions.
        Args:
            x (torch.Tensor): Input tensor.
        Returns:
            (torch.Tensor): Output tensor after applying the depth wise separable convolution.
        """
        return self.act(self.conv(x))

    @torch.no_grad()
    def fuse(self):
        """
        Fuses the convolutional layers in the RepVGGDW block.
        This method fuses the convolutional layers and updates the weights and biases accordingly.
        """
        conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
        conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)

        conv_w = conv.weight
        conv_b = conv.bias
        conv1_w = conv1.weight
        conv1_b = conv1.bias

        conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2])

        final_conv_w = conv_w + conv1_w
        final_conv_b = conv_b + conv1_b

        conv.weight.data.copy_(final_conv_w)
        conv.bias.data.copy_(final_conv_b)

        self.conv = conv
        del self.conv1


class CIB(nn.Module):
    """
    Conditional Identity Block (CIB) module.
    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True.
        e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5.
        lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False.
    """

    def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = nn.Sequential(
            Conv(c1, c1, 3, g=c1),
            Conv(c1, 2 * c_, 1),
            Conv(2 * c_, 2 * c_, 3, g=2 * c_) if not lk else RepVGGDW(2 * c_),
            Conv(2 * c_, c2, 1),
            Conv(c2, c2, 3, g=c2),
        )

        self.add = shortcut and c1 == c2

    def forward(self, x):
        """
        Forward pass of the CIB module.
        Args:
            x (torch.Tensor): Input tensor.
        Returns:
            (torch.Tensor): Output tensor.
        """
        return x + self.cv1(x) if self.add else self.cv1(x)


class C2fCIB(C2f):
    """
    C2fCIB class represents a convolutional block with C2f and CIB modules.
    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        n (int, optional): Number of CIB modules to stack. Defaults to 1.
        shortcut (bool, optional): Whether to use shortcut connection. Defaults to False.
        lk (bool, optional): Whether to use local key connection. Defaults to False.
        g (int, optional): Number of groups for grouped convolution. Defaults to 1.
        e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5.
    """

    def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))


class Attention(nn.Module):
    """
    Attention module that performs self-attention on the input tensor.
    Args:
        dim (int): The input tensor dimension.
        num_heads (int): The number of attention heads.
        attn_ratio (float): The ratio of the attention key dimension to the head dimension.
    Attributes:
        num_heads (int): The number of attention heads.
        head_dim (int): The dimension of each attention head.
        key_dim (int): The dimension of the attention key.
        scale (float): The scaling factor for the attention scores.
        qkv (Conv): Convolutional layer for computing the query, key, and value.
        proj (Conv): Convolutional layer for projecting the attended values.
        pe (Conv): Convolutional layer for positional encoding.
    """

    def __init__(self, dim, num_heads=8, attn_ratio=0.5):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.key_dim = int(self.head_dim * attn_ratio)
        self.scale = self.key_dim**-0.5
        nh_kd = nh_kd = self.key_dim * num_heads
        h = dim + nh_kd * 2
        self.qkv = Conv(dim, h, 1, act=False)
        self.proj = Conv(dim, dim, 1, act=False)
        self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

    def forward(self, x):
        """
        Forward pass of the Attention module.
        Args:
            x (torch.Tensor): The input tensor.
        Returns:
            (torch.Tensor): The output tensor after self-attention.
        """
        B, _, H, W = x.shape
        N = H * W
        qkv = self.qkv(x)
        q, k, v = qkv.view(B, self.num_heads, -1, N).split([self.key_dim, self.key_dim, self.head_dim], dim=2)

        attn = (q.transpose(-2, -1) @ k) * self.scale
        attn = attn.softmax(dim=-1)
        x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) + self.pe(v.reshape(B, -1, H, W))
        x = self.proj(x)
        return x


class PSA(nn.Module):
    """
    Position-wise Spatial Attention module.
    Args:
        c1 (int): Number of input channels.
        c2 (int): Number of output channels.
        e (float): Expansion factor for the intermediate channels. Default is 0.5.
    Attributes:
        c (int): Number of intermediate channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        attn (Attention): Attention module for spatial attention.
        ffn (nn.Sequential): Feed-forward network module.
    """

    def __init__(self, c1, c2, e=0.5):
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)

        self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
        self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False))

    def forward(self, x):
        """
        Forward pass of the PSA module.
        Args:
            x (torch.Tensor): Input tensor.
        Returns:
            (torch.Tensor): Output tensor.
        """
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = b + self.attn(b)
        b = b + self.ffn(b)
        return self.cv2(torch.cat((a, b), 1))


class SCDown(nn.Module):
    def __init__(self, c1, c2, k, s):
        """
        Spatial Channel Downsample (SCDown) module.
        Args:
            c1 (int): Number of input channels.
            c2 (int): Number of output channels.
            k (int): Kernel size for the convolutional layer.
            s (int): Stride for the convolutional layer.
        """
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)

    def forward(self, x):
        """
        Forward pass of the SCDown module.
        Args:
            x (torch.Tensor): Input tensor.
        Returns:
            (torch.Tensor): Output tensor after applying the SCDown module.
        """
        return self.cv2(self.cv1(x))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223

第二步

ultralytics/ultralytics/nn/modules/block.py 添加如下代码:

在这里插入图片描述

    "RepVGGDW",
    "CIB",
    "C2fCIB",
    "Attention",
    "PSA",
    "SCDown",
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

第三步

ultralytics/ultralytics/nn/tasks.py 导包, 添加模块

在这里插入图片描述

    RepVGGDW,
    CIB,
    C2fCIB,
    Attention,
    PSA,
    SCDown,
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

                if isinstance(m, RepVGGDW):
                    m.fuse()
                    m.forward = m.forward_fuse
  • 1
  • 2
  • 3

在这里插入图片描述

PSA, SCDown, C2fCIB
  • 1
C2fCIB
  • 1

第四步

更换 yaml ,开始训练,注意不同尺寸不是简单的调整深度宽度!

yolov10n.yaml

# Ultralytics YOLO 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/691164
推荐阅读
相关标签