赞
踩
图像在生成、获取、传输等过程中,受照明光源性能、成像系统性能、通道带宽和噪声等诸多因素的影响,往往造成对比度偏低、清晰度下降、并引入干扰噪声。
因此,图像增强的目的,就是改善图像质量,获得更适合于人眼观察、或者对后续计算机处理、分析过程更有利的图像。
图像增强并不以图像保真为准则,而是有选择地突出某些对人或计算机分析有意义的信息,抑制无用信息,提高图像的使用价值。
空间域灰度变换,又称为对比度变换或对比度增强。可分为以下几类:
(1)线性灰度变换
当图像成像时曝光不足或过度, 或由于成像设备的非线性和图像记录设备动态范围太窄等因素。都会产生对比度不足的弊病,使图像中的细节分辨不清。这时可将灰度范围线性扩展。设f(x,y)灰度范围为[a,b],g(x,y)灰度范围为[c,d],则有
(2)分段线性灰度变换
将感兴趣的灰度范围线性扩展,相对抑制不感兴趣的灰度区域。 设f(x,y)灰度范围为[0,Mf],g(x,y)灰度范围为[0,Mg]
(3)对数变换
其中,f 为输入灰度级,g为变换后的灰度级,c是按需要可以调整的参数。
其中,f 为输入灰度级,g为变换后的灰度级,c,r是按需要可以调整的参数。
特点:低灰度区压缩,高灰度区扩展。
灰度变换例子:
图像直方图的定义:一幅灰度级范围在[0, L-1]的数字图像的直方图定义为一离散函数,即:
其中, 是图像中灰度级为 的像素个数。 是第k个灰度级,k = 0,1,2,…,L-1。因此,直方图表示了图像中不同灰度级像素出现的次数,或者不同灰度级的像素数目。
或者定义为:
一副灰度级范围在[0, L-1]的数字图像的直方图定义为一离散函数,即:
其中,n 是图像的像素总数;
两种图像直方图定义的比较:
注:直方图仅仅描述了图像中像素的灰度级分布,但没有描述出像素的空间关系。
直方图实例:
(1)直方图均衡化
直方图均衡化是将原图像的直方图通过变换函数修正为均匀的直方图,然后按均衡直方图修正原图像。
图像均衡化处理后,图像的直方图是平直的,即各灰度级具有近似相同的出现频数,那么由于灰度级具有均匀的概率分布,图像看起来就更清晰了。
首先,假定连续灰度级的情况,推导直方图均衡化变换公式,令r代表灰度级,P ( r ) 为概率密度函数。 r 值已归一化,最大灰度值为1。
要找到一种变换 S =T ( r ) 使直方图变平直,为使变换后的灰度仍保持从黑到白的单一变化顺序,且变换范围与原先一致,以避免整体变亮或变暗。必须规定:
考虑到灰度变换不影响像素的位置分布,也不会增减像素数目。所以有:
应用到离散灰度级,设一幅图像的像素总数为n,分为L个灰度级。
例:设图象有64*64=4096个象素,有8个灰度级,灰度分布如表所示。进行直方图均衡化。
直方图均衡化实质上是减少图像的灰度级以换取对比度的加大。 在均衡过程中,原来的直方图上频数较小的灰度级被归入很少几个或一个灰度级内,故得不到增强。 若这些灰度级所构成的图像细节比较重要,则需采用局部区域直方图均衡。
(2)直方图匹配
修改一幅图像的直方图,使得它与另一幅图像的直方图匹配或具有一种预先规定的函数形状。 目标:突出我们感兴趣的灰度范围,使图像质量改善。
令P(r) 为原始图象的灰度密度函数,P(z)是期望通过匹配的图象灰度密度函数。对P(r) 及P(z) 作直方图均衡变换,通过直方图均衡为桥梁,实现P(r) 与P(z) 变换。
实例:
定义: 使用空间模板进行的图像处理,被称为空间滤波,模板本身被称为空间滤波器。
空间滤波器(masks/kernels/templates/windows)
模板运算(Mask operation):模板运算是数字图像处理中经常用到的一种运算方式。其基本思想是:将模板与待处理的图像做卷积/相关,达到图像平滑、锐化及边缘检测等目的。 如图像平滑中包括:平均模板、加权平均模板、高斯模板等。
Convolution/Correlation:
卷积运算:mask旋转180°,执行与相关相同的运算。
5.空域平滑滤波
(1)局部平均法
用像素邻域内的各像素灰度值的平均代表原来的灰度值。设有一幅含噪声的图像,且
其中: f(x,y) —— 原始图像 n(x,y) —— 噪声
A.简单局部平均法
B.阈值平均法
C.梯度倒数加权平均法
梯度倒数加权平滑起源于这样的考虑:在一幅数字图像中,相邻区域的变化大于区域内部的变化,在同一区域中,中间像素的变化小于边缘像素的变化。梯度值正比于邻域像素灰度级差值,即在图像变化缓慢区域,梯度值小,反之则大。
若取梯度倒数,该倒数大小正好与梯度相反。以梯度倒数做权重因子,则区域内部的邻点权重就大于边缘近旁或区域外的邻点。
邻域平均实例:
(2)中值滤波
中值滤波是一种统计排序(非线性)的信号处理方法。中值滤波器由J.W. Tukey (1971)首先提出,并应用于一维信号处理。后来被二维图像信号处理技术所应用。
实例:
中值滤波去除椒盐噪声,椒盐噪声:黑白点(胡椒黑色,盐巴白色)。
中值滤波特点:
缺点:
模板运算——算例:
集中常用平滑模板:
锐化滤波器的主要用途:
图像经转换、处理或传输后,质量可能下降,难免有些模糊。 图像锐化目的:加强图像轮廓,使图像看起来比较清晰、以便于对目标的识别和处理。图像锐化和平滑恰恰相反,它是通过增强高频分量来减少图像中的模糊,因此也称为高通滤波。
锐化常用方法:
(1)微分法
微分法—梯度 (Gradient)
梯度—两个重要性质:
几个常用微分表达式:
对于连续图像函数 f(x,y),它的x方向,y方向和α方向的一阶导数为:
同样,对于连续图像函数f(x,y),它的x方向,y方向和α方向的二阶导数为:
微分的差分近似
数学基础: 一维函数f (x),在点x处的导数的近似,将函数f (x+Δx)展开为关于x的泰勒级数,令Δx=1,且仅保留该级数的线性项,得到数字差分(自行证明!):
对应各个方向的差分形式分别为:
梯度计算方法:
方便起见,一般把梯度幅度也简称为梯度。常用的梯度计算方法:
(1)典型(水平/垂直)梯度算法
(2) 罗伯茨(Roberts)梯度算法
梯度增强策略
计算梯度的算法确定后,就有各种策略使图像轮廓突出。
轮廓比较突出,灰度平缓变化部分,梯度小,很黑。
(2) 背景保留
T:门限值、阈值(threshold),非负。适当选择T ,既突出轮廓,又不破坏背景。
(3) 背景保留,轮廓取单一灰度值。
LG:指定的轮廓灰度值。
(4) 轮廓保留,背景取单一灰度值。
LB:指定的背景灰度值。
(5) 轮廓、背景分别取单一灰度值,即二值化。只对轮廓感兴趣。
(2).高通滤波—掩模法(Mask)
边缘是由灰度级跳变点构成的,一般具有较高的空间频率。
因此,采用高通滤波的方法让高频分量顺利通过,使低频分量得到抑制,就可增强高频分量,使图像的边缘或线条变的清晰,实现图像的锐化。
在空间域中,让图像和高通滤波器的冲击响应函数进行卷积。
Laplacian 高通滤波例子
空域高通滤波器设计
滤波器模板系数的设计根据空域中高通冲激响应函数的图形来设计模板的系数:
g(x,y) = h(x,y) * f(x,y)
其他非规则高通滤波器
高通滤波存在的问题
高通滤波在增强了边的同时,丢失了图像的层次,图像会变的粗糙。
图像锐化实例
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。