赞
踩
具体流程:输入==RESHAPE==>784=>1000=>1000=>20=>1000=>1000=>784==RESHAPE==>输出
1.网络
网络层:encoder{[b, 784] => [b, 20]} + decoder{[b, 20] => [b, 784]}
连接层:input.reshape->encoder->decoder->output.reshpe
- class AE(nn.Module):
- def __init__(self):
- super(AE, self).__init__()
- # [b, 784] => [b, 20]
- self.encoder = nn.Sequential(
- nn.Linear(784, 256),
- nn.ReLU(),
- nn.Linear(256, 64),
- nn.ReLU(),
- nn.Linear(64, 20),
- nn.ReLU()
- )
- # [b, 20] => [b, 784]
- self.decoder = nn.Sequential(
- nn.Linear(20, 64),
- nn.ReLU(),
- nn.Linear(64, 256),
- nn.ReLU(),
- nn.Linear(256, 784),
- nn.Sigmoid() #输出压缩到0~1
- )
- def forward(self, x):
- """param x: [b, 1, 28, 28]"""
- batchsz = x.size(0)
- # flatten
- x = x.view(batchsz, 784)
- # encoder
- x = self.encoder(x)
- # decoder
- x = self.decoder(x)
- # reshape
- x = x.view(batchsz, 1, 28, 28)
- return x, None
2.训练&测试:
- def main():
- mnist_test = DataLoader(mnist_test, batch_size=32, shuffle=True)
- x, _ = iter(mnist_train).next()
- model = VAE().to(device)
- criteon = nn.MSELoss()
- optimizer = optim.Adam(model.parameters(), lr=1e-3)
-
- for epoch in range(1000):
- for batchidx, (x, _) in enumerate(mnist_train):
- # [b, 1, 28, 28]
- x = x.to(device)
- x_hat= model(x)
- loss = criteon(x_hat, x)
- # backprop
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- print(epoch, 'loss:', loss.item())
1.网络
网络层:encoder{[b, 784] => [b, 20]} + [b,20]=>μ[b,10]+σ[b,10] +decoder{[b, 10] => [b, 784]}
连接层:input.reshape->encoder->->decoder->计算KL->output.reshpe
- class VAE(nn.Module):
- def __init__(self):
- super(VAE, self).__init__()
- # [b, 784] => [b, 10]
- # sigma: [b, 10]
- self.encoder = nn.Sequential(
- nn.Linear(784, 256),
- nn.ReLU(),
- nn.Linear(256, 64),
- nn.ReLU(),
- nn.Linear(64, 20),
- nn.ReLU()
- )
- # [b, 20] => [b, 784]
- self.decoder = nn.Sequential(
- '''修改部分'''
- nn.Linear(10, 64),
- ''''''
- nn.ReLU(),
- nn.Linear(64, 256),
- nn.ReLU(),
- nn.Linear(256, 784),
- nn.Sigmoid()
- )
- self.criteon = nn.MSELoss()
-
- def forward(self, x):
- """param x: [b, 1, 28, 28]"""
- batchsz = x.size(0)
- # flatten
- x = x.view(batchsz, 784)
- '''修改部分'''
- # encoder
- # [b, 20], 包含mean和σ
- h_ = self.encoder(x)
- # [b, 20] => [b, 10] and [b, 10]
- mu, sigma = h_.chunk(2, dim=1)
- # reparametrize trick, epison~N(0, 1)
- h = mu + sigma * torch.randn_like(sigma)
- ''''''
- # decoder
- x_hat = self.decoder(h)
- # reshape
- x_hat = x_hat.view(batchsz, 1, 28, 28)
- '''KL'''
- kld = 0.5 * torch.sum(
- torch.pow(mu, 2) +
- torch.pow(sigma, 2) -
- torch.log(1e-8 + torch.pow(sigma, 2)) - 1
- ) / (batchsz*28*28)
- ''''''
- return x_hat, kld
2.训练&测试:
注意loss计算:
- for epoch in range(1000):
- for batchidx, (x, _) in enumerate(mnist_train):
- # [b, 1, 28, 28]
- x = x.to(device)
- x_hat, kld = model(x)
- ''''''
- loss = criteon(x_hat, x)
- elbo = - loss - 1.0 * kld
- loss = - elbo
- ''''''
- # backprop
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- print(epoch, 'kld loss:', kld.item())
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。