赞
踩
前面几篇文章我们尝试了使用opencv完成图像人脸识别以及识别后贴图或者打马赛克的方法。
偶尔我们也会有需求在视频中将人脸马赛克化,opencv也提供了相应的方法来实现这个功能。
视频究其本质是图像按照一定的帧率去播放。如果需要将视频中的人脸马赛克化,那么我们可以逐帧输出图像后进行识别人脸再对其马赛克化,最终将所有的图像再按一定的帧率组合播放。
#识别视频人脸并增加马赛克 #实现原理:cv2读取视频后逐帧识别人脸并增加马赛克/贴图,处理完毕后保存视频 import cv2 # laod opencv schema classifier = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml")#实践下来貌似这个schema匹配度最高 blockimg = "block.jpg"#贴图路径 #马赛克化 def do_mosaic(frame, x, y, w, h, neighbor=20): fh, fw = frame.shape[0], frame.shape[1] if (y + h > fh) or (x + w > fw): return for i in range(0, h - neighbor, neighbor): # 关键点0 减去neightbour 防止溢出 for j in range(0, w - neighbor, neighbor): rect = [j + x, i + y, neighbor, neighbor] color = frame[i + y][j + x].tolist() # 关键点1 tolist left_up = (rect[0], rect[1]) right_down = (rect[0] + neighbor - 1, rect[1] + neighbor - 1) # 关键点2 减去一个像素 cv2.rectangle(frame, left_up, right_down, color, -1) #贴图处理 def do_blockpic(frame, x, y, w, h): resizeimg = cv2.imread(blockimg) resizeimg_f = cv2.resize(resizeimg,(w,h)) frame[y:y+h, x:x+w] = resizeimg_f #识别人脸 def do_identifyFace(frame): color = (0, 255, 0) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # convert to grey # begin to identify face faceRects = classifier.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=3, minSize=(32, 32)) if len(faceRects): # get faces if above zero for faceRect in faceRects: # loop each face x, y, w, h = faceRect #do_blockpic(frame, x, y, w, h) do_mosaic(frame, x, y, w, h) #main starts srcVideo = "srcVideo.mp4"#源视频 savedVideo = "savedVideo.mp4"#处理后的视频 cap = cv2.VideoCapture(srcVideo) if not cap.isOpened(): print("error to open source video") exit() print("got source video") w = cap.get(cv2.CAP_PROP_FRAME_WIDTH) h = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) fps = cap.get(cv2.CAP_PROP_FPS) fcount = cap.get(cv2.CAP_PROP_FRAME_COUNT) print("total frames %s"%fcount)#获取所有帧数 writer = cv2.VideoWriter(savedVideo, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), int(fps), (int(w), int(h))) print("start handle source video") i = 0 while cap.isOpened(): success, frame = cap.read() while success: do_identifyFace(frame) print("finish frame %s"%i) writer.write(frame) #cv2.imwrite("frame%s.jpg"%i, frame) i += 1 success, frame = cap.read() if (cv2.waitKey(20) & 0xff) == ord('q'): break cap.release() print("finish handle source video") writer.release() cv2.destroyAllWindows()
处理后的视频效果
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。