赞
踩
实践:about ollama
安装
curl -fsSL https://ollama.com/install.sh | sh
部署
ollama create example -f Modelfile
运行
ollama run example
终止(ollama加载的大模型将会停止占用显存,此时ollama属于失联状态,部署和运行操作失效,会报错:
Error: could not connect to ollama app, is it running?
需要启动后,才可以进行部署和运行操作)
systemctl stop ollama.service
终止后启动(启动后,可以接着使用ollama 部署和运行大模型)
systemctl start ollama.service
Modelfile contents:
- FROM /home/wangbin/Desktop/Llama3/dir-unsloth.F16.gguf
-
-
- PARAMETER stop "<|im_start|>"
- PARAMETER stop "<|im_end|>"
-
- TEMPLATE """
- <|im_start|>system
- {{ .System }}<|im_end|>
- <|im_start|>user
- {{ .Prompt }}<|im_end|>
- <|im_start|>assistant
- """
-
-
-
-
- PARAMETER temperature 0.8
- PARAMETER num_ctx 8192
-
- PARAMETER stop "<|system|>"
- PARAMETER stop "<|user|>"
- PARAMETER stop "<|assistant|>"
-
-
-
- SYSTEM """You are a helpful, smart, kind, and efficient AI assistant.Your name is Aila. You always fulfill the user's requests to the best of your ability."""
ollama 参数:
- (unsloth_env) wangbin@wangbin-LEGION-REN9000K-34IRZ:~/Desktop/Llama3$ ollama
- Usage:
- ollama [flags]
- ollama [command]
-
- Available Commands:
- serve Start ollama
- create Create a model from a Modelfile
- show Show information for a model
- run Run a model
- pull Pull a model from a registry
- push Push a model to a registry
- list List models
- ps List running models
- cp Copy a model
- rm Remove a model
- help Help about any command
-
- Flags:
- -h, --help help for ollama
- -v, --version Show version information
-
卸载
- 1.Stop the Ollama Service
- First things first, we need to stop the Ollama service from running. This ensures a smooth uninstallation process. Open your terminal and enter the following command:
-
- sudo systemctl stop ollama
-
- This command halts the Ollama service.
-
-
-
-
- 2.Disable the Ollama Service
- Now that the service is stopped, we need to disable it so that it doesn’t start up again upon system reboot. Enter the following command:
-
- sudo systemctl disable ollama
-
- This ensures that Ollama won’t automatically start up in the future.
-
-
-
-
- 3.Remove the Service File
- We need to tidy up by removing the service file associated with Ollama. Enter the following command:
-
- sudo rm /etc/systemd/system/ollama.service
-
- This deletes the service file from your system.
-
-
-
-
- 4.Delete the Ollama Binary
- Next up, we’ll remove the Ollama binary itself. Enter the following command:
-
- sudo rm $(which ollama)
-
- This command removes the binary from your bin directory.
-
-
-
-
- 5.Remove Downloaded Models and Ollama User
- Lastly, we’ll clean up any remaining bits and pieces. Enter the following commands one by one:
-
- sudo rm -r /usr/share/ollama
-
- sudo userdel ollama sudo groupdel ollama
-
- These commands delete any downloaded models and remove the Ollama user and group from your system.
正文:
清洗PDF:
- 清洗PDF
- import PyPDF2
- import re
-
- def clean_extracted_text(text):
- """Clean and preprocess extracted text."""
- # Remove chapter titles and sections
- text = re.sub(r'^(Introduction|Chapter \d+:|What is|Examples:|Chapter \d+)', '', text, flags=re.MULTILINE)
- text = re.sub(r'ctitious', 'fictitious', text)
- text = re.sub(r'ISBN[- ]13: \d{13}', '', text)
- text = re.sub(r'ISBN[- ]10: \d{10}', '', text)
- text = re.sub(r'Library of Congress Control Number : \d+', '', text)
- text = re.sub(r'(\.|\?|\!)(\S)', r'\1 \2', text) # Ensure space after punctuation
- text = re.sub(r'All rights reserved|Copyright \d{4}', '', text)
- text = re.sub(r'\n\s*\n', '\n', text)
- text = re.sub(r'[^\x00-\x7F]+', ' ', text)
- text = re.sub(r'\s{2,}', ' ', text)
-
- # Remove all newlines and replace newlines only after periods
- text = text.replace('\n', ' ')
- text = re.sub(r'(\.)(\s)', r'\1\n', text)
-
- return text
-
- def extract_text_from_pdf(pdf_path):
- """Extract text from a PDF file."""
- with open(pdf_path, 'rb') as file:
- reader = PyPDF2.PdfReader(file)
- text = ''
- for page in reader.pages:
- if page.extract_text():
- text += page.extract_text() + ' ' # Append text of each page
- return text
-
- def main():
- pdf_path = '/Users/charlesqin/Documents/The Art of Asking ChatGPT.pdf' # Path to your PDF file
- extracted_text = extract_text_from_pdf(pdf_path)
- cleaned_text = clean_extracted_text(extracted_text)
-
- # Output the cleaned text to a file
- with open('cleaned_text_output.txt', 'w', encoding='utf-8') as file:
- file.write(cleaned_text)
-
- if __name__ == '__main__':
- main()
微调代码:
- from unsloth import FastLanguageModel
- import torch
-
- from trl import SFTTrainer
- from transformers import TrainingArguments
-
-
-
-
- max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
- dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
- load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
-
- # 4bit pre quantized models we support for 4x faster downloading + no OOMs.
- fourbit_models = [
- "unsloth/mistral-7b-bnb-4bit",
- "unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
- "unsloth/llama-2-7b-bnb-4bit",
- "unsloth/gemma-7b-bnb-4bit",
- "unsloth/gemma-7b-it-bnb-4bit", # Instruct version of Gemma 7b
- "unsloth/gemma-2b-bnb-4bit",
- "unsloth/gemma-2b-it-bnb-4bit", # Instruct version of Gemma 2b
- "unsloth/llama-3-8b-bnb-4bit", # [NEW] 15 Trillion token Llama-3
- ] # More models at https://huggingface.co/unsloth
-
- model, tokenizer = FastLanguageModel.from_pretrained(
- model_name = "unsloth/llama-3-8b-bnb-4bit",
- max_seq_length = max_seq_length,
- dtype = dtype,
- load_in_4bit = load_in_4bit,
- # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
- )
-
- model = FastLanguageModel.get_peft_model(
- model,
- r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
- target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
- "gate_proj", "up_proj", "down_proj",],
- lora_alpha = 16,
- lora_dropout = 0, # Supports any, but = 0 is optimized
- bias = "none", # Supports any, but = "none" is optimized
- # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
- use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
- random_state = 3407,
- use_rslora = False, # We support rank stabilized LoRA
- loftq_config = None, # And LoftQ
- )
-
- alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
- ### Instruction:
- {}
- ### Input:
- {}
- ### Response:
- {}"""
-
- EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
- def formatting_prompts_func(examples):
- instructions = examples["instruction"]
- inputs = examples["input"]
- outputs = examples["output"]
- texts = []
- for instruction, input, output in zip(instructions, inputs, outputs):
- # Must add EOS_TOKEN, otherwise your generation will go on forever!
- text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
- texts.append(text)
- return { "text" : texts, }
- pass
-
- from datasets import load_dataset
-
- file_path = "/home/Ubuntu/alpaca_gpt4_data_zh.json"
-
-
- dataset = load_dataset("json", data_files={"train": file_path}, split="train")
-
- dataset = dataset.map(formatting_prompts_func, batched = True,)
-
-
-
-
- trainer = SFTTrainer(
- model = model,
- tokenizer = tokenizer,
- train_dataset = dataset,
- dataset_text_field = "text",
- max_seq_length = max_seq_length,
- dataset_num_proc = 2,
- packing = False, # Can make training 5x faster for short sequences.
- args = TrainingArguments(
- per_device_train_batch_size = 2,
- gradient_accumulation_steps = 4,
- warmup_steps = 5,
- max_steps = 60,
- learning_rate = 2e-4,
- fp16 = not torch.cuda.is_bf16_supported(),
- bf16 = torch.cuda.is_bf16_supported(),
- logging_steps = 1,
- optim = "adamw_8bit",
- weight_decay = 0.01,
- lr_scheduler_type = "linear",
- seed = 3407,
- output_dir = "outputs",
- ),
- )
-
- trainer_stats = trainer.train()
-
- model.save_pretrained_gguf("dir", tokenizer, quantization_method = "q4_k_m")
- model.save_pretrained_gguf("dir", tokenizer, quantization_method = "q8_0")
- model.save_pretrained_gguf("dir", tokenizer, quantization_method = "f16")
Ollama:
LM Studio:
我们使用经过Fine Tuning以后的Llama3大模型,询问它问题:
然后我们使用没有经过Fine Tuning的Llama3,还是用刚才的问题询问它:
Reference link:https://www.youtube.com/watch?v=oxTVzGwKeoU
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。