赞
踩
默认自己将yolov8的环境配置好了
image里面全是图像,txt里面是对应图像的标注文件,以及class.txt文件
创建一个spilt_data.py文件
import os, shutil from sklearn.model_selection import train_test_split val_size = 0.1 test_size = 0.2 postfix = 'jpg' imgpath = 'VOCdevkit/JPEGImages' txtpath = 'VOCdevkit/txt' os.makedirs('images/train', exist_ok=True) os.makedirs('images/val', exist_ok=True) os.makedirs('images/test', exist_ok=True) os.makedirs('labels/train', exist_ok=True) os.makedirs('labels/val', exist_ok=True) os.makedirs('labels/test', exist_ok=True) listdir = [i for i in os.listdir(txtpath) if 'txt' in i and i != 'classes.txt'] train, test = train_test_split(listdir, test_size=test_size, shuffle=True, random_state=0) train, val = train_test_split(train, test_size=val_size, shuffle=True, random_state=0) for i in train: shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/train/{}.{}'.format(i[:-4], postfix)) shutil.copy('{}/{}'.format(txtpath, i), 'labels/train/{}'.format(i)) for i in val: shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/val/{}.{}'.format(i[:-4], postfix)) shutil.copy('{}/{}'.format(txtpath, i), 'labels/val/{}'.format(i)) for i in test: shutil.copy('{}/{}.{}'.format(imgpath, i[:-4], postfix), 'images/test/{}.{}'.format(i[:-4], postfix)) shutil.copy('{}/{}'.format(txtpath, i), 'labels/test/{}'.format(i))
如果自己的数据集是VOC格式的,需要将xml的标注文件转化成txt格式的,创建一个xml2txt.py文件(注意将路径修改)
import xml.etree.ElementTree as ET import os, cv2 import numpy as np from os import listdir from os.path import join classes = [] def convert(size, box): dw = 1. / (size[0]) dh = 1. / (size[1]) x = (box[0] + box[1]) / 2.0 - 1 y = (box[2] + box[3]) / 2.0 - 1 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def convert_annotation(xmlpath, xmlname): with open(xmlpath, "r", encoding='utf-8') as in_file: txtname = xmlname[:-4] + '.txt' txtfile = os.path.join(txtpath, txtname) tree = ET.parse(in_file) root = tree.getroot() filename = root.find('filename') img = cv2.imdecode(np.fromfile('{}/{}.{}'.format(imgpath, xmlname[:-4], postfix), np.uint8), cv2.IMREAD_COLOR) h, w = img.shape[:2] res = [] for obj in root.iter('object'): cls = obj.find('name').text if cls not in classes: classes.append(cls) cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w, h), b) res.append(str(cls_id) + " " + " ".join([str(a) for a in bb])) if len(res) != 0: with open(txtfile, 'w+') as f: f.write('\n'.join(res)) if __name__ == "__main__": postfix = 'jpg' imgpath = 'VOCdevkit/JPEGImages' xmlpath = 'VOCdevkit/Annotations' #xml标注文件路径 txtpath = 'VOCdevkit/txt' if not os.path.exists(txtpath): os.makedirs(txtpath, exist_ok=True) list = os.listdir(xmlpath) error_file_list = [] for i in range(0, len(list)): try: path = os.path.join(xmlpath, list[i]) if ('.xml' in path) or ('.XML' in path): convert_annotation(path, list[i]) print(f'file {list[i]} convert success.') else: print(f'file {list[i]} is not xml format.') except Exception as e: print(f'file {list[i]} convert error.') print(f'error message:\n{e}') error_file_list.append(list[i]) print(f'this file convert failure\n{error_file_list}') print(f'Dataset Classes:{classes}')
yolo detect train data=E:\project\ultralytics\ultralytics\data.yaml model=yolov8n.pt epochs=300
data.yaml为数据信息
yolo model=runs/detect/train/weights/best.pt data=E:\project\ultralytics\ultralytics\data.yaml
yolo predict model=runs/detect/train/weights/best.pt source=test_data #source为本地文件的路径
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。