赞
踩
- # -*- coding: utf-8 -*-
- """
- Created on Mon Aug 21 10:57:29 2017
- @author: 飘的心
- """
- #过滤式特征选择
- #根据方差进行选择,方差越小,代表该属性识别能力很差,可以剔除
- from sklearn.feature_selection import VarianceThreshold
- x=[[100,1,2,3],
- [100,4,5,6],
- [100,7,8,9],
- [101,11,12,13]]
- selector=VarianceThreshold(1) #方差阈值值,
- selector.fit(x)
- selector.variances_ #展现属性的方差
- selector.transform(x)#进行特征选择
- selector.get_support(True) #选择结果后,特征之前的索引
- selector.inverse_transform(selector.transform(x)) #将特征选择后的结果还原成原始数据
- #被剔除掉的数据,显示为0
-
-
-
- #单变量特征选择
-
-
- from sklearn.feature_selection import SelectKBest,f_classif
- x=[[1,2,3,4,5],
- [5,4,3,2,1],
- [3,3,3,3,3],
- [1,1,1,1,1]]
- y=[0,1,0,1]
- selector=SelectKBest(score_func=f_classif,k=3)#选择3个特征,指标使用的是方差分析F值
- selector.fit(x,y)
- selector.scores_ #每一个特征的得分
- selector.pvalues_
- selector.get_support(True) #如果为true,则返回被选出的特征下标,如果选择False,则
- #返回的是一个布尔值组成的数组,该数组只是那些特征被选择
- selector.transform(x)
-
-
- #包裹时特征选择
-
-
- from sklearn.feature_selection import RFE
- from sklearn.svm import LinearSVC #选择svm作为评定算法
- from sklearn.datasets import load_iris #加载数据集
- iris=load_iris()
- x=iris.data
- y=iris.target
- estimator=LinearSVC()
- selector=RFE(estimator=estimator,n_features_to_select=2) #选择2个特征
- selector.fit(x,y)
- selector.n_features_ #给出被选出的特征的数量
- selector.support_ #给出了被选择特征的mask
- selector.ranking_ #特征排名,被选出特征的排名为1
-
-
-
-
-
-
- #注意:特征提取对于预测性能的提升没有必然的联系,接下来进行比较;
- from sklearn.feature_selection import RFE
- from sklearn.svm import LinearSVC
- from sklearn import cross_validation
- from sklearn.datasets import load_iris
-
-
- #加载数据
- iris=load_iris()
- X=iris.data
- y=iris.target
- #特征提取
- estimator=LinearSVC()
- selector=RFE(estimator=estimator,n_features_to_select=2)
- X_t=selector.fit_transform(X,y)
- #切分测试集与验证集
- x_train,x_test,y_train,y_test=cross_validation.train_test_split(X,y,
- test_size=0.25,random_state=0,stratify=y)
- x_train_t,x_test_t,y_train_t,y_test_t=cross_validation.train_test_split(X_t,y,
- test_size=0.25,random_state=0,stratify=y)
-
-
- clf=LinearSVC()
- clf_t=LinearSVC()
- clf.fit(x_train,y_train)
- clf_t.fit(x_train_t,y_train_t)
- print('origin dataset test score:',clf.score(x_test,y_test))
- #origin dataset test score: 0.973684210526
- print('selected Dataset:test score:',clf_t.score(x_test_t,y_test_t))
- #selected Dataset:test score: 0.947368421053
-
-
-
-
-
-
- import numpy as np
- from sklearn.feature_selection import RFECV
- from sklearn.svm import LinearSVC
- from sklearn.datasets import load_iris
- iris=load_iris()
- x=iris.data
- y=iris.target
- estimator=LinearSVC()
- selector=RFECV(estimator=estimator,cv=3)
- selector.fit(x,y)
- selector.n_features_
- selector.support_
- selector.ranking_
- selector.grid_scores_
-
-
-
-
- #嵌入式特征选择
- import numpy as np
- from sklearn.feature_selection import SelectFromModel
- from sklearn.svm import LinearSVC
- from sklearn.datasets import load_digits
- digits=load_digits()
- x=digits.data
- y=digits.target
- estimator=LinearSVC(penalty='l1',dual=False)
- selector=SelectFromModel(estimator=estimator,threshold='mean')
- selector.fit(x,y)
- selector.transform(x)
- selector.threshold_
- selector.get_support(indices=True)
-
-
-
-
- #scikitlearn提供了Pipeline来讲多个学习器组成流水线,通常流水线的形式为:将数据标准化,
- #--》特征提取的学习器————》执行预测的学习器,除了最后一个学习器之后,
- #前面的所有学习器必须提供transform方法,该方法用于数据转化(如归一化、正则化、
- #以及特征提取
- #学习器流水线(pipeline)
- from sklearn.svm import LinearSVC
- from sklearn.datasets import load_digits
- from sklearn import cross_validation
- from sklearn.linear_model import LogisticRegression
- from sklearn.pipeline import Pipeline
- def test_Pipeline(data):
- x_train,x_test,y_train,y_test=data
- steps=[('linear_svm',LinearSVC(C=1,penalty='l1',dual=False)),
- ('logisticregression',LogisticRegression(C=1))]
- pipeline=Pipeline(steps)
- pipeline.fit(x_train,y_train)
- print('named steps',pipeline.named_steps)
- print('pipeline score',pipeline.score(x_test,y_test))
-
- if __name__=='__main__':
- data=load_digits()
- x=data.data
- y=data.target
- test_Pipeline(cross_validation.train_test_split(x,y,test_size=0.25,
- random_state=0,stratify=y))
-
-
-
赞
踩
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。