当前位置:   article > 正文

python:opencv 二值化处理_python cv2 二值化

python cv2 二值化

1:二值化处理
https://blog.csdn.net/zj360202/article/details/79165796

定义:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。

       一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。
  • 1

简单的阈值-(全局阈值):
Python-OpenCV中提供了阈值(threshold)函数:
cv2.threshold()

函数:第一个参数 src 指原图像,原图像应该是灰度图。
第二个参数 x 指用来对像素值进行分类的阈值。
第三个参数 y 指当像素值高于(有时是小于)阈值时应该被赋予的新的像素值
第四个参数 Methods 指,不同的不同的阈值方法,这些方法包括:

•cv2.THRESH_BINARY 图(1)
•cv2.THRESH_BINARY_INV 图(2)
•cv2.THRESH_TRUNC 图(3)
•cv2.THRESH_TOZERO 图(4)
•cv2.THRESH_TOZERO_INV 图(5)

在这里插入图片描述
破折线为将被阈值化的值;虚线为阈值
在这里插入图片描述
图(1)
大于阈值的像素点的灰度值设定为最大值(如8位灰度值最大为255),灰度值小于阈值的像素点的灰度值设定为0。
在这里插入图片描述
图(2)
大于阈值的像素点的灰度值设定为0,而小于该阈值的设定为255。
在这里插入图片描述
图(3)

像素点的灰度值小于阈值不改变,大于阈值的灰度值的像素点就设定为该阈值。
在这里插入图片描述
图(4)

像素点的灰度值小于该阈值的不进行任何改变,而大于该阈值的部分,其灰度值全部变为0。
在这里插入图片描述
图(5)

像素点的灰度值大于该阈值的不进行任何改变,像素点的灰度值小于该阈值的,其灰度值全部变为0。

import cv2  
import numpy as np  
from matplotlib import pyplot as plt  
img=cv2.imread('1.bmp')  
GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  
ret,thresh1=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY)  
ret,thresh2=cv2.threshold(GrayImage,127,255,cv2.THRESH_BINARY_INV)  
ret,thresh3=cv2.threshold(GrayImage,127,255,cv2.THRESH_TRUNC)  
ret,thresh4=cv2.threshold(GrayImage,127,255,cv2.THRESH_TOZERO)  
ret,thresh5=cv2.threshold(GrayImage,127,255,cv2.THRESH_TOZERO_INV)  
titles = ['Gray Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']  
images = [GrayImage, thresh1, thresh2, thresh3, thresh4, thresh5]  
for i in xrange(6):  
   plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')  
   plt.title(titles[i])  
   plt.xticks([]),plt.yticks([])  
plt.show()  
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/954971
推荐阅读
相关标签
  

闽ICP备14008679号