当前位置:   article > 正文

Spark从入门到精通(一)

pyspark 从入门到精通

什么是Spark

  1. 大数据计算框架
  2. 离线批处理
  3. 大数据体系架构图(Spark)
    751560-20181130220312277-210727846.png
  4. Spark包含了大数据领域常见的各种计算框架:比如Spark Core用于离线计算,Spark SQL用于交互式查询,Spark Streaming用于实时流式计算,Spark MLib用于机器学习,Spark GraphX用于图计算
  5. Spark主要用于大数据的计算,而Hadoop以后主要用于大数据的存储(比如HDFS、Hive、HBase)等,,以及资源调度(Yarn)
  6. Spark+hadoop的组合是大数据领域最热门的组合,也是最有前景的组合
  7. Spark与MapReduce计算过程,Spark基于内存进行计算,所以速度更快
    751560-20181130221407131-2062638762.png

  8. Spark整体架构图
    751560-20181130221623437-1232234919.png

Spark的特点

  1. 速度快:基于内存进行计算(当然也有部分计算基于磁盘,比如shuffle)
  2. 容易上手开发:Spark的基于RDD的计算模型,比Hadoop的基于Map-Reduce的计算模型要更加易于理解,更加易于上手开发,实现各种复杂功能,比如二次排序,topn等复杂操作时,更加便捷
  3. 超强的通用性:Spark提供了多种计算组件
  4. 集成Hadoop:Spark与Hadoop进行了高度的继承,完成double win
  5. 极高的活跃度

Hive架构

751560-20181201195231065-513071799.png

  1. Spark SQL实际上不能完全替代Hive,以为Hive是一种基于HDFS的数据仓库,并且提供了基于SQL模型的,针对存储了大数据的数据仓库,进行分布式交互查询的查询引擎
  2. 严格来讲,Spark SQL能够替代的,是Hive的查询引擎,而不是Hive本身,Spark本身是不提供存储的,自然不能替代Hive作为数据仓库的这个功能
  3. Hive的查询引擎,基于MapReduce,必须经过shuffle过程走磁盘,因此速度是非常缓慢的。Spark基于内存,因此速度达到Hive查询引擎的数倍以上
  4. Spark SQL相较Hive的另一个特点,就是支持大量不同的数据源,包括Hive、json、parquet、jdbc等等。此外,Spark SQL由于身处Spark技术堆栈内,也是基于RDD来工作,因此可以与Spark其他组件无缝整合使用。比如Spark SQL支持可以直接针对hdfs文件执行sql语句

Storm与Spark对比

751560-20181201200709626-993052207.png

转载于:https://www.cnblogs.com/sky-chen/p/10046888.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/955392
推荐阅读
相关标签
  

闽ICP备14008679号