赞
踩
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #定义计算准确率的函数 def compute_accuracy(v_xs,v_ys): global prediction y_pre = sess.run(prediction,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1}) correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) result = sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys,keep_prob:1}) return result def weight_variable(shape): initial = tf.truncated_normal(shape=shape,stddev=0.1) #生成一个形状为shape,标准差为0.1的tensor return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1,shape=shape) return tf.Variable(initial) def conv2d(x,W): #stride[1,x_movement,y_movement,1] #must have stride[0]=stride[3]=1 return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') def max_pool_2d(x): #ksize is same as strides return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #define placeholder for inputs to network xs = tf.placeholder(tf.float32,[None,784])#28*28 ys = tf.placeholder(tf.float32,[None,10]) keep_prob = tf.placeholder(tf.float32) x_image = tf.reshape(xs,[-1,28,28,1])#这里的-1表示数量未知 #print(x_image.shape) the result will be [n_samples,28,28,1] #conv1 layer W_conv1 = weight_variable([5,5,1,32])#patch 5*5,in size 1,out size 32,过滤器大小为5*5,高度与图片一样是1,共32个过滤器 b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)#output size 28*28*32 h_pool1 = max_pool_2d(h_conv1)#output size 14*14*32 #conv2 layer W_conv2 = weight_variable([5,5,32,64])#patch 5*5,in size 32,out size 64,过滤器大小为5*5,高度与图片一样是32,共64个过滤器 b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)#output size 14*14*64 h_pool2 = max_pool_2d(h_conv2)#output size 7*7*64 #func1 layer W_fc1 =weight_variable([7*7*64,1024]) b_fc1 = bias_variable([1024]) #[n,sample,7,7,64]->>[n_samples,7*7*64] h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])#这里的-1是什么意思?-1是指先不管有多少个sample h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)#这里使用随机失活用来防止过拟合 #func2 layer W_fc2 =weight_variable([1024,10]) b_fc2 = bias_variable([10]) prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) #train the neural network cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1])) train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy) sess = tf.Session() sess.run(tf.initialize_all_variables()) for i in range(1000): batch_xs,batch_ys = mnist.train.next_batch(100) sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5}) if i%50 == 0: print(compute_accuracy(mnist.test.images,mnist.test.labels))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。