当前位置:   article > 正文

ONNX预训练模型加载

onnx保存并加载模型

tvm官网中,对从ONNX预训练模型中加载模型的教程说明

教程来自于:https://docs.tvm.ai/tutorials/frontend/from_onnx.html#sphx-glr-tutorials-frontend-from-onnx-py

首先我对教程进行了一些修改,很多东西没有必要,比如不是每次都需要从网上下载图片和模型,super_resolution.onnx和cat.png都预先下载到了文件同目录下,

同时,最新版本的tvm中不支持Python2.7,我没有编译llvm,所以我把我的设置都改到了cuda上,在24行和32行有体现,注意最新版本

 1 import onnx
 2 import numpy as np
 3 import tvm
 4 import tvm.relay as relay
 5 # from tvm.contrib.download import download_testdata
 6 
 7 # model_url = ''.join(['https://gist.github.com/zhreshold/',
 8 #                      'bcda4716699ac97ea44f791c24310193/raw/',
 9 #                      '93672b029103648953c4e5ad3ac3aadf346a4cdc/',
10 #                      'super_resolution_0.2.onnx'])
11 # model_path = download_testdata(model_url, 'super_resolution.onnx', module='onnx')
12 # now you have super_resolution.onnx on disk
13 onnx_model = onnx.load('super_resolution.onnx')
14 
15 from PIL import Image
16 # img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
17 # img_path = download_testdata(img_url, 'cat.png', module='data')
18 img_path = 'cat.png'
19 img = Image.open(img_path).resize((224, 224))
20 img_ycbcr = img.convert("YCbCr")  # convert to YCbCr
21 img_y, img_cb, img_cr = img_ycbcr.split()
22 x = np.array(img_y)[np.newaxis, np.newaxis, :, :]
23 
24 target = 'cuda'
25 
26 input_name = '1'
27 shape_dict = {input_name: x.shape}
28 sym, params = relay.frontend.from_onnx(onnx_model, shape_dict)
29 print(sym)
30 
31 with relay.build_config(opt_level=1):
32     intrp = relay.build_module.create_executor('graph', sym, tvm.gpu(0), target)
33 
34 dtype = 'float32'
35 tvm_output = intrp.evaluate(sym)(tvm.nd.array(x.astype(dtype)), **params).asnumpy()

第28行有一个从模型加载的函数from_onnx

官方的解释:tvm.relay.frontend.from_onnx(model, shape=None, dtype='float32')

Convert a ONNX model into an equivalent Relay Function.

ONNX graphs are represented as Python Protobuf objects. The companion parameters will be handled automatically. However, the input names from onnx graph is vague, mixing inputs and network weights/bias such as “1”, “2”… For convenience, we rename the real input names to “input_0”, “input_1”… And renaming parameters to “param_0”, “param_1”…

Parameters:
  • model (protobuf object) – ONNX ModelProto after ONNX v1.1.0
  • shape (dict of str to tuple, optional) – The input shape to the graph
  • dtype (str or dict of str to str) – The input types to the graph
Returns:
  • sym (tvm.relay.expr.Function) – Compatible relay function
  • params (dict of str to tvm.NDArray) – The parameter dict to be used by relay

看返回值,sym是relay Function,在后边加一个print(sym)输出,可以看到图这一级的IR

fn (%v1: Tensor[(1, 1, 224, 224), float32], %v2: Tensor[(64, 1, 5, 5), float32], %v3: Tensor[(64,), float32], %v4: Tensor[(64, 64, 3, 3), float32], %v5: Tensor[(64,), float32], %v6: Tensor[(32, 64, 3, 3), float32], %v7: Tensor[(32,), float32], %v8: Tensor[(9, 32, 3, 3), float32], %v9: Tensor[(9,), float32]) {
  %0 = nn.conv2d(%v1, %v2, padding=[2, 2], kernel_size=[5, 5])
  %1 = expand_dims(%v3, axis=1, num_newaxis=2)
  %2 = add(%0, %1)
  %3 = nn.relu(%2)
  %4 = nn.conv2d(%3, %v4, padding=[1, 1], kernel_size=[3, 3])
  %5 = expand_dims(%v5, axis=1, num_newaxis=2)
  %6 = add(%4, %5)
  %7 = nn.relu(%6)
  %8 = nn.conv2d(%7, %v6, padding=[1, 1], kernel_size=[3, 3])
  %9 = expand_dims(%v7, axis=1, num_newaxis=2)
  %10 = add(%8, %9)
  %11 = nn.relu(%10)
  %12 = nn.conv2d(%11, %v8, padding=[1, 1], kernel_size=[3, 3])
  %13 = expand_dims(%v9, axis=1, num_newaxis=2)
  %14 = add(%12, %13)
  %15 = reshape(%14, newshape=[1, 1, 3, 3, 224, 224])
  %16 = transpose(%15, axes=[0, 1, 4, 2, 5, 3])
  reshape(%16, newshape=[1, 1, 672, 672])
}

 

转载于:https://www.cnblogs.com/jourluohua/p/10892811.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/1019769
推荐阅读
相关标签
  

闽ICP备14008679号