赞
踩
myutils.py
- import cv2
-
- def sort_contours(cnts, method="left-to-right"):
- reverse = False
- i = 0
-
- if method == "right-to-left" or method == "bottom-to-top":
- reverse = True
-
- if method == "top-to-bottom" or method == "bottom-to-top":
- i = 1
- boundingBoxes = [cv2.boundingRect(c) for c in cnts] #用一个最小的矩形,把找到的形状包起来x,y,h,w
- (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
- key=lambda b: b[1][i], reverse=reverse))
-
- return cnts, boundingBoxes
- def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
- dim = None
- (h, w) = image.shape[:2]
- if width is None and height is None:
- return image
- if width is None:
- r = height / float(h)
- dim = (int(w * r), height)
- else:
- r = width / float(w)
- dim = (width, int(h * r))
- resized = cv2.resize(image, dim, interpolation=inter)
- return resized
ocr_template_match.py
- # 导入工具包
- from imutils import contours
- import numpy as np
- import argparse
- import cv2
- import myutils
-
- # 设置参数
- ap = argparse.ArgumentParser()
- ap.add_argument("-i", "--image", default='images/credit_card_01.png',
- help="path to input image")
- ap.add_argument("-t", "--template", default='ocr_a_reference.png',
- help="path to template OCR-A image")
- args = vars(ap.parse_args())
-
- # 指定信用卡类型
- FIRST_NUMBER = {
- "3": "American Express",
- "4": "Visa",
- "5": "MasterCard",
- "6": "Discover Card"
- }
- # 绘图展示
- def cv_show(name,img):
- cv2.imshow(name, img)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
- # 读取一个模板图像
- img = cv2.imread(args["template"])
- cv_show('img',img)
- # 灰度图
- ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
- cv_show('ref',ref)
- # 二值图像
- ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
- cv_show('ref',ref)
-
- # 计算轮廓
- #cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
- #返回的list中每个元素都是图像中的一个轮廓
-
- ref_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
-
- cv2.drawContours(img,refCnts,-1,(0,0,255),3)
- cv_show('img',img)
- print (np.array(refCnts).shape)
- refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
- digits = {}
-
- # 遍历每一个轮廓
- for (i, c) in enumerate(refCnts):
- # 计算外接矩形并且resize成合适大小
- (x, y, w, h) = cv2.boundingRect(c)
- roi = ref[y:y + h, x:x + w]
- roi = cv2.resize(roi, (57, 88))
-
- # 每一个数字对应每一个模板
- digits[i] = roi
-
- # 初始化卷积核
- rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
- sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
-
- #读取输入图像,预处理
- image = cv2.imread(args["image"])
- cv_show('image',image)
- image = myutils.resize(image, width=300)
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- cv_show('gray',gray)
-
- #礼帽操作,突出更明亮的区域
- tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
- cv_show('tophat',tophat)
- #
- gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
- ksize=-1)
-
-
- gradX = np.absolute(gradX)
- (minVal, maxVal) = (np.min(gradX), np.max(gradX))
- gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
- gradX = gradX.astype("uint8")
-
- print (np.array(gradX).shape)
- cv_show('gradX',gradX)
-
- #通过闭操作(先膨胀,再腐蚀)将数字连在一起
- gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
- cv_show('gradX',gradX)
- #THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
- thresh = cv2.threshold(gradX, 0, 255,
- cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
- cv_show('thresh',thresh)
-
- #再来一个闭操作
-
- thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
- cv_show('thresh',thresh)
-
- # 计算轮廓
-
- thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)
-
- cnts = threshCnts
- cur_img = image.copy()
- cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
- cv_show('img',cur_img)
- locs = []
-
- # 遍历轮廓
- for (i, c) in enumerate(cnts):
- # 计算矩形
- (x, y, w, h) = cv2.boundingRect(c)
- ar = w / float(h)
-
- # 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
- if ar > 2.5 and ar < 4.0:
-
- if (w > 40 and w < 55) and (h > 10 and h < 20):
- #符合的留下来
- locs.append((x, y, w, h))
-
- # 将符合的轮廓从左到右排序
- locs = sorted(locs, key=lambda x:x[0])
- output = []
-
- # 遍历每一个轮廓中的数字
- for (i, (gX, gY, gW, gH)) in enumerate(locs):
- # initialize the list of group digits
- groupOutput = []
-
- # 根据坐标提取每一个组
- group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
- cv_show('group',group)
- # 预处理
- group = cv2.threshold(group, 0, 255,
- cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
- cv_show('group',group)
- # 计算每一组的轮廓
- group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)
- digitCnts = contours.sort_contours(digitCnts,
- method="left-to-right")[0]
-
- # 计算每一组中的每一个数值
- for c in digitCnts:
- # 找到当前数值的轮廓,resize成合适的的大小
- (x, y, w, h) = cv2.boundingRect(c)
- roi = group[y:y + h, x:x + w]
- roi = cv2.resize(roi, (57, 88))
- cv_show('roi',roi)
-
- # 计算匹配得分
- scores = []
-
- # 在模板中计算每一个得分
- for (digit, digitROI) in digits.items():
- # 模板匹配
- result = cv2.matchTemplate(roi, digitROI,
- cv2.TM_CCOEFF)
- (_, score, _, _) = cv2.minMaxLoc(result)
- scores.append(score)
-
- # 得到最合适的数字
- groupOutput.append(str(np.argmax(scores)))
-
- # 画出来
- cv2.rectangle(image, (gX - 5, gY - 5),
- (gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
- cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
- cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
-
- # 得到结果
- output.extend(groupOutput)
-
- # 打印结果
- print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
- print("Credit Card #: {}".format("".join(output)))
- cv2.imshow("Image", image)
- cv2.waitKey(0)
ocr_a_reference.png
credit_card_01.png
credit_card_02.png
检测结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。