PCA 实现:
参考博客:https://blog.csdn.net/u013719780/article/details/78352262
- from __future__ import print_function
- from sklearn import datasets
- import matplotlib.pyplot as plt
- import matplotlib.cm as cmx
- import matplotlib.colors as colors
- import numpy as np
- # matplotlib inline
-
-
-
- def shuffle_data(X, y, seed=None):
- if seed:
- np.random.seed(seed)
-
- idx = np.arange(X.shape[0])
- np.random.shuffle(idx)
-
- return X[idx], y[idx]
-
-
-
- # 正规化数据集 X
- def normalize(X, axis=-1, p=2):
- lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
- lp_norm[lp_norm == 0] = 1
- return X / np.expand_dims(lp_norm, axis)
-
-
- # 标准化数据集 X
- def standardize(X):
- X_std = np.zeros(X.shape)
- mean = X.mean(axis=0)
- std = X.std(axis=0)
-
- # 做除法运算时请永远记住分母不能等于0的情形
- # X_std = (X - X.mean(axis=0)) / X.std(axis=0)
- for col in range(np.shape(X)[1]):
- if std[col]:
- X_std[:, col] = (X_std[:, col] - mean[col]) / std[col]
-
- return X_std
-
-
- # 划分数据集为训练集和测试集
- def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None):
- if shuffle:
- X, y = shuffle_data(X, y, seed)
-
- n_train_samples = int(X.shape[0] * (1-test_size))
- x_train, x_test = X[:n_train_samples], X[n_train_samples:]
- y_train, y_test = y[:n_train_samples], y[n_train_samples:]
-
- return x_train, x_test, y_train, y_test
-
-
-
- # 计算矩阵X的协方差矩阵
- def calculate_covariance_matrix(X, Y=np.empty((0,0))):
- if not Y.any():
- Y = X
- n_samples = np.shape(X)[0]
- covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0))
-
- return np.array(covariance_matrix, dtype=float)
-
-
- # 计算数据集X每列的方差
- def calculate_variance(X):
- n_samples = np.shape(X)[0]
- variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0)))
- return variance
-
-
- # 计算数据集X每列的标准差
- def calculate_std_dev(X):
- std_dev = np.sqrt(calculate_variance(X))
- return std_dev
-
-
- # 计算相关系数矩阵
- def calculate_correlation_matrix(X, Y=np.empty([0])):
- # 先计算协方差矩阵
- covariance_matrix = calculate_covariance_matrix(X, Y)
- # 计算X, Y的标准差
- std_dev_X = np.expand_dims(calculate_std_dev(X), 1)
- std_dev_y = np.expand_dims(calculate_std_dev(Y), 1)
- correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T))
-
- return np.array(correlation_matrix, dtype=float)
-
-
-
- class PCA():
- """
- 主成份分析算法PCA,非监督学习算法.
- """
- def __init__(self):
- self.eigen_values = None
- self.eigen_vectors = None
- self.k = 2
-
- def transform(self, X):
- """
- 将原始数据集X通过PCA进行降维
- """
- covariance = calculate_covariance_matrix(X)
-
- # 求解特征值和特征向量
- self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance)
-
- # 将特征值从大到小进行排序,注意特征向量是按列排的,即self.eigen_vectors第k列是self.eigen_values中第k个特征值对应的特征向量
- idx = self.eigen_values.argsort()[::-1]
- eigenvalues = self.eigen_values[idx][:self.k]
- eigenvectors = self.eigen_vectors[:, idx][:, :self.k]
-
- # 将原始数据集X映射到低维空间
- X_transformed = X.dot(eigenvectors)
-
- return X_transformed
-
-
- def main():
- # Load the dataset
- data = datasets.load_iris()
- X = data.data
- y = data.target
-
- # 将数据集X映射到低维空间
- X_trans = PCA().transform(X)
-
- x1 = X_trans[:, 0]
- x2 = X_trans[:, 1]
-
- print(X[0:2])
-
- cmap = plt.get_cmap('viridis')
- colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]
-
- class_distr = []
- # Plot the different class distributions
- for i, l in enumerate(np.unique(y)):
- _x1 = x1[y == l]
- _x2 = x2[y == l]
- _y = y[y == l]
- class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))
-
- # Add a legend
- plt.legend(class_distr, y, loc=1)
-
- # Axis labels
- plt.xlabel('Principal Component 1')
- plt.ylabel('Principal Component 2')
- plt.show()
-
-
- if __name__ == "__main__":
- main()
kPCA
1、核主成份分析 Kernel Principle Component Analysis:
1)现实世界中,并不是所有数据都是线性可分的
2)通过LDA,PCA将其转化为线性问题并不是好的方法
3)线性可分 VS 非线性可分
2、引入核主成份分析:
可以通过kPCA将非线性数据映射到高维空间,在高维空间下使用标准PCA将其映射到另一个低维空间
3、原理:
定义非线性映射函数,该函数可以对原始特征进行非线性组合,以将原始的d维数据集映射到更高维的k维特征空间。
1)多项式核
2)双曲正切核
3)径向基核(RBF),高斯核函数
基于RBF核的kPCA算法流程:
Python 代码:
- from scipy.spatial.distance import pdist, squareform
- from scipy import exp
- from numpy.linalg import eigh
- import numpy as np
-
- def rbf_kernel_pca(X, gamma, n_components):
- """
- RBF kernel PCA implementation.
- Parameters
- ------------
- X: {NumPy ndarray}, shape = [n_samples, n_features]
- gamma: float
- Tuning parameter of the RBF kernel
- n_components: int
- Number of principal components to return
- Returns
- ------------
- X_pc: {NumPy ndarray}, shape = [n_samples, k_features]
- Projected dataset
- """
- # Calculate pairwise squared Euclidean distances
- # in the MxN dimensional dataset.
- sq_dists = pdist(X, 'sqeuclidean')
-
- # Convert pairwise distances into a square matrix.
- mat_sq_dists = squareform(sq_dists)
-
- # Compute the symmetric kernel matrix.
- K = exp(-gamma * mat_sq_dists)
-
- # Center the kernel matrix.
- N = K.shape[0]
- one_n = np.ones((N, N)) / N
- K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)
-
- # Obtaining eigenpairs from the centered kernel matrix
- # numpy.linalg.eigh returns them in sorted order
- eigvals, eigvecs = eigh(K)
-
- # Collect the top k eigenvectors (projected samples)
- X_pc = np.column_stack((eigvecs[:, -i]
- for i in range(1, n_components + 1)))
-
- return X_pc
-
-
-
-
-
-
- import matplotlib.pyplot as plt
- from sklearn.datasets import make_moons
-
- X, y = make_moons(n_samples=100, random_state=123)
-
- plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5)
- plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5)
-
- plt.tight_layout()
- # plt.savefig('./figures/half_moon_1.png', dpi=300)
- plt.show()
-
-
- # 直接用PCA
- from sklearn.decomposition import PCA
- from sklearn.preprocessing import StandardScaler
-
- scikit_pca = PCA(n_components=2)
- X_spca = scikit_pca.fit_transform(X)
-
- fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3))
-
- ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1],
- color='red', marker='^', alpha=0.5)
- ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1],
- color='blue', marker='o', alpha=0.5)
-
- ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02,
- color='red', marker='^', alpha=0.5)
- ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02,
- color='blue', marker='o', alpha=0.5)
-
- ax[0].set_xlabel('PC1')
- ax[0].set_ylabel('PC2')
- ax[1].set_ylim([-1, 1])
- ax[1].set_yticks([])
- ax[1].set_xlabel('PC1')
-
- plt.tight_layout()
- # plt.savefig('./figures/half_moon_2.png', dpi=300)
- plt.show()
-
-
- # KPCA
-
- from matplotlib.ticker import FormatStrFormatter
-
- X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2)
-
- fig, ax = plt.subplots(nrows=1,ncols=2, figsize=(7,3))
- ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1],
- color='red', marker='^', alpha=0.5)
- ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1],
- color='blue', marker='o', alpha=0.5)
-
- ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1))+0.02,
- color='red', marker='^', alpha=0.5)
- ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1))-0.02,
- color='blue', marker='o', alpha=0.5)
-
- ax[0].set_xlabel('PC1')
- ax[0].set_ylabel('PC2')
- ax[1].set_ylim([-1, 1])
- ax[1].set_yticks([])
- ax[1].set_xlabel('PC1')
- ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
- ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
-
- plt.tight_layout()
- # plt.savefig('./figures/half_moon_3.png', dpi=300)
- plt.show()
-
-
-
- #sklearn kpca
-
- from sklearn.decomposition import KernelPCA
-
- X, y = make_moons(n_samples=100, random_state=123)
- scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15)
- X_skernpca = scikit_kpca.fit_transform(X)
-
- plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1],
- color='red', marker='^', alpha=0.5)
- plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1],
- color='blue', marker='o', alpha=0.5)
-
- plt.xlabel('PC1')
- plt.ylabel('PC2')
- plt.tight_layout()
- # plt.savefig('./figures/scikit_kpca.png', dpi=300)
- plt.show()
参考: https://blog.csdn.net/weixin_40604987/article/details/79632888