这里采用的是Yi Ma , Stefano Soatto. An Invitation to 3-D Vision , From Images to Geometric Models 的算法
%
// Algorithm 8.1. also 11.7 %
// Rank based factorization algorithm for multiview reconstruction %
// using point features %
// as described in Chapter 8, "An introduction to 3-D Vision" %
// by Y. Ma, S. Soatto, J. Kosecka, S. Sastry (MASKS) %
// Code distributed free for non-commercial use %
// Copyright (c) MASKS, 2003
%
// Generates multiple synthetic views of a house and computes the %
// motion and structure, calibrated case, point features only %
// Jana Kosecka, George Mason University, 2002 %
// ======================================================================
close all; clear;
FRAMES = 3;
PLOTS = 3;
%
// transformation is expressed wrt to the camera frame
%
//画出三维的结构 original motion and 3D structure figure; hold on;
plot3_struct(XC(1,:,1),XC(2,:,1),XC(3,:,1));
plot3(XC(1,:,1),XC(2,:,1),XC(3,:,1),'*');
draw_frame_scaled([diag([1,1,1]), zeros(3,1)],0.5);
title('original motion and 3D structure');
view(220,20);
grid on; axis equal;
%
// axis off; pause;
for i=2:FRAMES %
//计算第i帧的图像坐标xim theta = (i-1)*rinc*pi/180;
r_axis = rot_axis(:,i-1)/norm(rot_axis(:,i-1));
t_axis = trans_axis(:,i-1)/norm(trans_axis(:,i-1));
trans = (i-1)*tinc*t_axis;
R = rot_matrix(r_axis,theta);
%
// translation represents origin of the camera frame %
// in the world frame T(:,:,i) = ([ R trans;
0 0 0 1]);
%
// all transformation with respect to the object frame XC(:,:,i) = T(:,:,i)*XC(:,:,1); %
// XW; draw_frame_scaled(T(1:3,:,i),0.5);
xim(:,:,i) = [XC(1,:,i)./XC(3,:,i); XC(2,:,i)./XC(3,:,i);
ones(1,NPOINTS)];
end;
for j = 2:FRAMES
T_ini(:,j) = T(1:3,4,j);
end;
%
// noise can be added here for i=1:FRAMES
xim_noisy(:,:,i) = xim(:,:,i);
end
%
// pause 以下为SFM算法 %
//--------------------------------------------------------------------- %
// compute initial \alpha's for each point using first two frames only 1)首先用八点算法计算初始的R0,T0(我感觉T0~即1,0帧之间的相对移动~和实际的应该相差常数倍,因此会导致恢复的结构和实际相差常数倍),然后估计lambda。。。 [T0, R0] = essentialDiscrete(xim_noisy(:,:,1),xim_noisy(:,:,2));
for i = 1:NPOINTS
alpha(:,i) = -(skew(xim_noisy(:,i,2))*T0)'*
(skew(xim_noisy(:,i,2))*R0*xim_noisy(:,i,1))
/(norm(skew(xim_noisy(:,i,2))*T0))^2;
lambda(:,i) = 1/alpha(:,i);
end
scale = norm(alpha(:,1)); %
// set the global scale alpha = alpha/scale; %
// normalize everything scale = norm(lambda(:,1)); %
// set the global scale lambda = lambda/scale; %
// normalize everything
%
//--------------------------------------------------------------------- %
// Compute initial motion estimates for all frames %
// Here do 3 iterations - in real setting look at the change of scales
iter = 1;
while (iter < 5);
for j = 2:FRAMES
P = []; %
// setup matrix P for i = 1:NPOINTS
a = [kron(skew(xim_noisy(:,i,j)),xim(:,i,1)')
alpha(:,i)*skew(xim_noisy(:,i,j))];
P = [P; a];
end;
%
// pause [um, sm, vm] = svd(P);
Ti = vm(10:12,12);
Ri = transpose(reshape(vm(1:9,12)',3,3));
[uu,ss,vv] = svd(Ri);
Rhat(:,:,j) = sign(det(uu*vv'))*uu*vv';
Ti = sign(det(uu*vv'))*Ti/((det(ss))^(1/3));
That(:,j) = Ti;
True = T(1:3,4,j);
end
%
// recompute alpha's based on all views lambda_prev = lambda;
for i = 1:NPOINTS
M = []; %
// setup matrix M for j=2:FRAMES %
// set up Hl matrix for all m views a = [ skew(xim(:,i,j))*That(:,j)
skew(xim(:,i,j))*Rhat(:,:,j)*xim(:,i,1)];
M = [M; a];
end;
a1 = -M(:,1)'*M(:,2)/norm(M(:,1))^2;
lambda(:,i) = 1/a1;
end;
scale = norm(lambda(:,1)); %
// set the global scale lambda = lambda/scale; %
// normalize everything iter = iter + 1
end %
// end while iter
%
// final structure with respect to the first frame XF = [lambda.*xim(1,:,1);
lambda.*xim(2,:,1);
lambda.*xim(3,:,1)];