赞
踩
Dijkstra算法是解决**单源最短路径**问题的**贪心算法**
它先求出长度最短的一条路径,再参照该最短路径求出长度次短的一条路径
直到求出从源点到其他各个顶点的最短路径。
首先假定源点为u,顶点集合V被划分为两部分:集合 S 和 V-S。 初始时S中仅含有源点u,其中S中的顶点到源点的最短路径已经确定。
集合S 和V-S中所包含的顶点到源点的最短路径的长度待定,称从源点出发只经过S中的点到达V-S中的点的路径为特殊路径,
并用dist[]记录当前每个顶点对应的最短特殊路径长度。
选择特殊路径长度最短的路径,将其连接的V-S中的顶点加入到集合S中,同时更新数组dist[]。一旦S包含了所有顶点,dist[]就是从源到所有其他顶点的最短路径长度。 (1)数据结构。 设置地图的带权邻接矩阵为map[][],即如果从源点u到顶点i有边,就令map[u][i]=<u,i>的权值,否则map[u][i]=∞; 采用一维数组dist[i]来记录从源点到i顶点的最短路径长度:采用一维数组p[i]来记录最短路径上i顶点的前驱。 (2)初始化。令集合S={ u},对于集合V-S中的所有顶点x,初始化dist[i]=map[u][i],如果源点u到顶点i有边相连,初始化p[i]=u(i的前驱是u),否则p[i]=-1 (3)找最小。在集合V-S中依照贪心策略来寻找使得dist[j]具有最小值的顶点t,即dist[t]=min,则顶点t就是集合V-S中距离源点u最近的顶点。 (4)加入S战队。将顶点t加入集合S,同时更新V-S (5)判结束。如果集合V-S为空,算法结束,否则转6 (6)借东风。在(3)中已近找到了源点到t的最短路径,那么对集合V-S中所有与顶点t相邻的顶点j,都可以借助t走捷径。 如果dist[j]>dist[t]+map[t][j],则dist[j]=dist[t]+map[t][j],记录顶点j的前驱为t,p[j]=t,转(3)。 //我自己在这里理解就是,从u找到与它最近的点t,在从t找到与它最近的点j,在....按照这样持续下去,直到最后一个点 这里我再通俗的解释下这个借东风的意思。 源点为1,如果我们找到了距离源点最近的点2,且点2与3,4相连。 这样,我们如果要倒3,4有两种方法: 1->2->3(4) 1->3(4) 这里我们就要判断是从1直接到3(4)快,还是经过2后快。假设<1,2>=2 / <2,3>=3 / <1,3>=4 根据上面的数据,我们第一次找最小找到的是2结点,如果我们直接把2替换掉1当做源点继续找下一个最近的点,这种方法是错的。 因为可以看出1->3只用4,而过2的话要用5。
这里我就直接放图片了,书里的图不好画。但主要的是自己按照其流程过一遍,在草稿纸上自己画一遍,本书的网盘地址在文章末。
跟着图解大致了解了一遍接下来就要上代码了,放心,代码不是一个完整的几十行的代码,全部按步骤划分好了的,这里方便大家粘贴。
/* (1)数据结构 n:城市顶点个数. m:城市间路线的条数. map[][]:地图对应的带权邻接矩阵. dist[]:记录源点u到某顶点的最短路径长度。 p[]:记录源点到某顶点的最短路径上的该顶点的前一个顶点(前驱).flag[]:flag[i]=true说明顶点i已加入到集合S,否则该顶点属于集合V-S */ const int N=100;//初始化城市个数,可修改 const int INF=1e7; //无穷大 int map[N][N],dist[N],p[N],n,m; bool flag[N]; //(2)初始化源点u到其他各个顶点的最短路径长度,初始化源点u出边邻接点的前驱为u bool flag[n];//如果flag[i]=true,说明该顶点i已经加入到集合S;否则i属于集合V-S for(int i=1;i<=n;i++){ dist[i]=map[u][i]; //初始化源点u到其他各个顶点的最短路径长度 flag[i]=f
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。