赞
踩
- import numpy as np
- import cv2 as cv
-
- # 彩色图像进行自适应直方图均衡化
- def hisEqulColor(img):
- ## 将RGB图像转换到YCrCb空间中
- ycrcb = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB)
- # 将YCrCb图像通道分离
- channels = cv.split(ycrcb)
- # 以下代码详细注释见官网:
- # https://docs.opencv.org/4.1.0/d5/daf/tutorial_py_histogram_equalization.html
- clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
- clahe.apply(channels[0], channels[0])
- cv.merge(channels, ycrcb)
- cv.cvtColor(ycrcb, cv.COLOR_YCR_CB2BGR, img)
- return img
-
-
- img = cv.imread(r'C:\Users\thorne\PycharmProjects\biyesheji\image\2.jpeg')
- img1 = img.copy()
- #自适应直方图均衡化后的图res1
- res1 = hisEqulColor(img1)
- #拼接图res
- res = np.hstack((img, res1))
- #例图太大了,缩小一下
- #正常显示的话就是cv.imshow('img+img1',res)
- img_test2=cv.resize(res, (0, 0), fx=0.5, fy=0.5, interpolation=cv.INTER_NEAREST)
- cv.imshow('img+img1',img_test2)
- cv.waitKey(0)
运行结果:
补充:还有全局自适应直方图均衡化
- #!/usr/bin/env python
- # coding=utf-8
- import cv2 as cv
-
- # 彩色图像全局直方图均衡化
- def hisEqulColor1(img):
- # 将RGB图像转换到YCrCb空间中
- ycrcb = cv.cvtColor(img, cv.COLOR_BGR2YCR_CB)
- # 将YCrCb图像通道分离
- channels = cv.split(ycrcb)
- # 对第1个通道即亮度通道进行全局直方图均衡化并保存
- cv.equalizeHist(channels[0], channels[0])
- # 将处理后的通道和没有处理的两个通道合并,命名为ycrcb
- cv.merge(channels, ycrcb)
- # 将YCrCb图像转换回RGB图像
- cv.cvtColor(ycrcb, cv.COLOR_YCR_CB2BGR, img)
- return img
-
- img = cv.imread(r'C:\Users\thorne\PycharmProjects\biyesheji\image\2.jpeg')
- img1 = img.copy()
- #全局自适应直方图均衡化
- res1 = hisEqulColor1(img1)
- #例图太大了,缩小一下
- #正常显示的话就是cv.imshow('img1',res1)
- img_test=cv.resize(res1, (0, 0), fx=0.5, fy=0.5, interpolation=cv.INTER_NEAREST)
- cv.imshow('img1',img_test)
- cv.waitKey(0)
运行结果:(我就显示了全局均衡化后的图)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。