当前位置:   article > 正文

详解多分类模型的Macro-F1/Precision/Recall计算过程_多分类的f1计算

多分类的f1计算

引入

关于准确率(accuracy)、精度(precision)、查全率(recall)、F1的计算过程,之前写过一篇文章[1]。

根据文章[1]中的公式,我们可以知道,精度(precision)、查全率(recall)、F1的计算,是针对于二分类器来说的。他们的计算,只与y_true/y_pred有关,也要求y_true/y_pred中,只含有0和1两个数。

对二分类模型来说,可以直接调用sklearn.metrics中的f1_score, precision_score, 和recall_score来进行计算。但对多分类模型来说,y_true/y_pred中可能会有种label(比如y_true=[1,2,3]),应该如何计算其F1/P/R值呢?

Macro Average

在google上搜索,可以看到如下描述

The F1 measure is widely used to evaluate the success of a binary classifier when one class is rare. Micro average, macro average, and per instance average F1 measures are used in multilabel classification.
  • 1

可见,传统的F1计算公式[1],只适用于二分类模型。对多分类模型来说,要用Macro Average规则来进行F1(或者P、R)的计算。

举例来说,假设是三个类别的分类模型:

y_true=[1,2,3]
y_pred=[1,1,3]
  • 1
  • 2

根据P/R的计算规则[1],

  • Precision = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP/(TP+FP)
  • Recall = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP/(TP+FN)
  • F1 = 2*(Precision*Recall)/(Precision+Recall)

下面计算过程中,若除法过程中,分子分母同时为零,则最终结果也为0.

则Macro Average F1的计算过程如下:

(1)如下,将第1个类别设置为True(1),非第1个类别的设置为False(0),计算其P1,R1

y_true=[1,0,0]
y_pred=[1,1,0]
  • 1
  • 2
  • P1 = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP/(TP+FP) = 1/(1+1)=0.5
  • R1 = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP/(TP+FN)= 1/1 = 1.0
  • F1_1 = 2*(PrecisionRecall)/(Precision+Recall)=20.5*1.0/(0.5+1.0)=0.6666667

(2)如下,将第2个类别设置为True(1),非第2个类别的设置为False(0),计算其P2,R2

y_true=[0,1,0]
y_pred=[0,0,0]
  • 1
  • 2
  • P2 = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP/(TP+FP) =0.0
  • R2 = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP/(TP+FN)= 0.0
  • F1_2 = 2*(Precision*Recall)/(Precision+Recall)=0

(3)如下,将第3个类别设置为True(1),非第3个类别的设置为False(0),计算其P3,R3

y_true=[0,0,1]
y_pred=[0,0,1]
  • 1
  • 2
  • P3 = (预测为1且正确预测的样本数)/(所有预测为1的样本数) = TP/(TP+FP) = 1/1=1.0
  • R3 = (预测为1且正确预测的样本数)/(所有真实情况为1的样本数) = TP/(TP+FN)= 1/1 = 1.0
  • F1_3 = 2*(PrecisionRecall)/(Precision+Recall)=21.0*1.0/(1.0+1.0)=1.0

(4)对P1/P2/P3取平均为P,对R1/R2/R3取平均为R,对F1_1/F1_2/F1_3取平均F1

  • P=(P1+P2+P3)/3=(0.5+0.0+1.0)/3=0.5
  • R=(R1+R2+R3)/3=(1.0+0.0+1.0)/3=0.6666666
  • F1 = (0.6666667+0.0+1.0)/3=0.5556

最后这个取平均后的得到的P值/R值,就是Macro规则下的P值/R值。

对这个3类别模型来说,它的F1就是0.5556。

sklearn计算程序(macro)

下面是使用sklearn直接计算多类别F1/P/R的程序,将接口中的average参数配置为’macro’即可。

from sklearn.metrics import f1_score, precision_score, recall_score

y_true=[1,2,3]
y_pred=[1,1,3]

f1 = f1_score( y_true, y_pred, average='macro' )
p = precision_score(y_true, y_pred, average='macro')
r = recall_score(y_true, y_pred, average='macro')

print(f1, p, r)
# output: 0.555555555556 0.5 0.666666666667
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

可见,输出的P/R/F1值,都和上面我们手动计算的结果一致。

sklearn中macro-F1源码静态分析

(1)找到第三方库所在的位置
先利用如下Python代码找到sklearn源码位置。我的位置在/root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn

import sklearn, os
path = os.path.dirname(sklearn.__file__)
  • 1
  • 2

(2)找到要调试的源码位置

我们调试源码的目的,就是想看看f1_score()计算的过程,所以应该调试f1_score的源码。

问题是怎么找到f1_score()的源码呢?

sklearn的api文档(https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score)中,都在“[source]”中给出了源码链接。

通过这个“[source]”的链接(https://github.com/scikit-learn/scikit-learn/blob/b7b4d3e2f/sklearn/metrics/classification.py#L950),可以发现,我们要调试的源码,位于sklearn/metrics/classification.py

(3)分析classification.py中的F1计算函数f1_score()

主要是调用了计算F值的函数fbeta_score(),并将beta设置为1,就是计算F1值。fbeta_score()中最重要的函数是[precision_recall_fscore_support()](https://github.com/scikit-learn/scikit-learn/blob/b7b4d3e2f1a65bcb6d40431d3b61ed1d563c9dab/sklearn/metrics/classification.py#L1263),该函数的核心逻辑如下:

#参数解释:
#y_true:真实值
#y_pred:预测值
#beta=1.0:默认计算F1值
#其他参数这里用不到
def precision_recall_fscore_support(y_true, y_pred, beta=1.0, labels=None,
                                    pos_label=1, average=None,
                                    warn_for=('precision', 'recall',
                                              'f-score'),
                                    sample_weight=None):
    # F值得beta必须大于0
    if beta <= 0:
        raise ValueError("beta should be >0 in the F-beta score")
    
    # 计算混淆矩阵
    MCM = multilabel_confusion_matrix(y_true, y_pred,
                                      sample_weight=sample_weight,
                                      labels=labels, samplewise=samplewise)
    tp_sum = MCM[:, 1, 1]
    pred_sum = tp_sum + MCM[:, 0, 1]
    true_sum = tp_sum + MCM[:, 1, 0]
    
    # 若为micro准则,则将各个类别的TP等值累加后进行计算
    # 若为micro,tp_sum/pred_sum/true_sum,最终就由一个list(各个类别自己的值)变为一个值
    if average == 'micro':
        tp_sum = np.array([tp_sum.sum()])
        pred_sum = np.array([pred_sum.sum()])
        true_sum = np.array([true_sum.sum()])

    beta2 = beta ** 2# 这里beta=1,则beta2也等于1,就是计算F1

    # 计算precision和recall
    precision = _prf_divide(tp_sum, pred_sum,
                            'precision', 'predicted', average, warn_for)
    recall = _prf_divide(tp_sum, true_sum,
                         'recall', 'true', average, warn_for)

    # 计算f_score, 
    denom = beta2 * precision + recall
    denom[denom == 0.] = 1  # avoid division by 0
    f_score = (1 + beta2) * precision * recall / denom

    # 如果考虑weight,则需要设置weights变量(后面函数中会用到)
    if average == 'weighted':
        weights = true_sum
        if weights.sum() == 0:
            return 0, 0, 0, None
    elif average == 'samples':
        weights = sample_weight
    else:
        weights = None

    # macro/micro都会运行到这里
    if average is not None:
        assert average != 'binary' or len(precision) == 1
        # 把各个类别的precision取平均,作为多类别的precision
        precision = np.average(precision, weights=weights)
        # 把各个类别的recall取平均,作为多类别的recall
        recall = np.average(recall, weights=weights)
        # 把各个类别的f_score取平均,作为多类别的f_score
        f_score = np.average(f_score, weights=weights)
        true_sum = None  # return no support

    return precision, recall, f_score, true_sum

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65

因为有if average == 'micro'中的逻辑,会将各个类别计算得到的tp_sum/pred_sum/true_sum这样一个多个值的list,转换为单个值的list。

所以,后续计算precisionrecall时,若为’micro’,则precisionrecall是单个值。否则(macro时),precisionrecall也是各个类别计算得到的多个值的list。

动态分析

(1)通过上面的步骤,“找到要调试的源码位置”

我的位置在/root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py

(2)删掉Python预编译的字节码

到如下目录,删掉__pycache__目录。

/root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/
  • 1

(3)在第三方库源码中加断点

f1_score()的关键计算过程,在源码precision_recall_fscore_support()函数中的如下位置。在其中用pdb加入断点,如下所示:

import pdb;pdb.set_trace()

beta2 = beta ** 2

# Divide, and on zero-division, set scores to 0 and warn:

precision = _prf_divide(tp_sum, pred_sum,
                        'precision', 'predicted', average, warn_for)
recall = _prf_divide(tp_sum, true_sum,
                     'recall', 'true', average, warn_for)
# Don't need to warn for F: either P or R warned, or tp == 0 where pos
# and true are nonzero, in which case, F is well-defined and zero
denom = beta2 * precision + recall
denom[denom == 0.] = 1  # avoid division by 0
f_score = (1 + beta2) * precision * recall / denom
if average is not None:
    assert average != 'binary' or len(precision) == 1
    precision = np.average(precision, weights=weights)
    recall = np.average(recall, weights=weights)
    f_score = np.average(f_score, weights=weights)
    true_sum = None  # return no support
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

静态看这个代码,也能基本理解其含义。我们下面参考[2]中的过程,来动态调试程序,看看各个变量动态过程中实际的数值。

运行上文中的“sklearn计算程序(macro)”,单步调试,过程如下

(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1107)precision_recall_fscore_support()
-> with np.errstate(divide='ignore', invalid='ignore'):
(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1112)precision_recall_fscore_support()
-> precision = _prf_divide(tp_sum, pred_sum,
(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1113)precision_recall_fscore_support()
-> 'precision', 'predicted', average, warn_for)
(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1114)precision_recall_fscore_support()
-> recall = _prf_divide(tp_sum, true_sum,
(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1115)precision_recall_fscore_support()
-> 'recall', 'true', average, warn_for)
(Pdb) precision
array([ 0.5,  0. ,  1. ])
(Pdb) recall
*** NameError: name 'recall' is not defined
(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1118)precision_recall_fscore_support()
-> f_score = ((1 + beta2) * precision * recall /
(Pdb) recall
array([ 1.,  0.,  1.])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

可见,sklearn源码计算得到的recall与precision是和我们手工计算一致的。继续单步,如下

(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1128)precision_recall_fscore_support()
-> elif average == 'samples':
(Pdb) f_score
array([ 0.66666667,  0.        ,  1.        ])
  • 1
  • 2
  • 3
  • 4
  • 5

可见,f_score的值就是这个数组,和我们上面手动计算的数值一样。继续单步执行程序,如下所示

(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1137)precision_recall_fscore_support()
-> f_score = np.average(f_score, weights=weights)
(Pdb) f_score
array([ 0.66666667,  0.        ,  1.        ])
(Pdb) n
> /root/anaconda3/envs/envtf/lib/python3.5/site-packages/sklearn/metrics/classification.py(1138)precision_recall_fscore_support()
-> true_sum = None  # return no support
(Pdb) f_score
0.55555555555555547
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

可见,最终f_score的值的计算,是由f_score = np.average(f_score, weights=weights)计算得到的,在这里就是把上面的f_score数组取均值。

sklearn的整个计算过程,与我们手工计算完全一样。

注意,调试完成后,删除对源码的改动,即去掉import pdb;pdb.set_trace()

总结

Macro Average 多类别(N类) F1/P/R的计算,就是计算N次F1/P/R,再分别取平均。

参考

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/142870
推荐阅读
相关标签
  

闽ICP备14008679号