赞
踩
线程间通信,通过利用全局变量,来实现通信,但是在通信过程中使用这些变量可能会导致资源竞争,那么就需要使用到互斥锁和信息量,辅助我们实现线程的通信。
线程结束后,自动回收线程空间
int pthread_attr_init(pthread_attr_t *attr);
功能:线程属性初始化
int pthread_attr_destroy(pthread_attr_t *attr);
功能:线程属性销毁
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
功能:设置分离属性
PTHREAD_CREATE_DETACHED 分离属性
PTHREAD_CREATE_JOINABLE 加入属性(默认)
1. 利用线程的分离属性创建三个线程,打印线程id
- #include "head.h"
-
- void *thread1(void *arg)
- {
- printf("stat to thread1(tid:%#x)\n", (unsigned int)pthread_self());
- return NULL;
- }
-
- void *thread2(void *arg)
- {
- printf("stat to thread2(tid:%#x)\n", (unsigned int)pthread_self());
- return NULL;
- }
-
- void *thread3(void *arg)
- {
- printf("stat to thread2(tid:%#x)\n", (unsigned int)pthread_self());
- return NULL;
- }
-
- int main(void)
- {
- int i = 0;
- pthread_t thread[3];
- void *(*p[3])(void *) = {thread1, thread2, thread3};
- pthread_attr_t attr;
-
- pthread_attr_init(&attr);
- pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
-
- for(i = 0; i < 3; i++)
- {
- pthread_create(&thread[i], &attr, p[i], NULL);
- }
- pthread_attr_destroy(&attr);
-
- while(1)
- {
-
- }
-
- }
2. 首先定义一个学生结构体,包含姓名、性别、年龄、分数。再创建两个两个线程,线程1负责从终端接收学生信息,线程2负责将学生信息打印在终端。
- #include "head.h"
-
- struct studet
- {
- char name[100];
- char sex;
- int age;
- int score;
- };
-
- void *InputInfo(void *arg)
- {
- struct studet *stu = arg;
- char *ptmp = stu->name;
-
- fgets(stu->name, 100, stdin);
- ptmp[strlen(ptmp)-1] = '\0';
-
- scanf("%c", &stu->sex);
- scanf("%d", &stu->age);
- scanf("%d", &stu->score);
-
- return NULL;
- }
-
- void *OutputInfo(void *arg)
- {
- struct studet *stu = arg;
-
- sleep(5);
- printf("%s\n", stu->name);
- printf("%c\n", stu->sex);
- printf("%d\n", stu->age);
- printf("%d\n", stu->score);
-
- return NULL;
- }
-
- int main(void)
- {
- struct studet t;
- pthread_t input;
- pthread_t output;
-
- pthread_create(&input, NULL, InputInfo, &t);
- pthread_create(&output, NULL, OutputInfo, &t);
-
- pthread_join(input, NULL);
- pthread_join(output, NULL);
-
- return 0;
- }
防止资源竞争
- int pthread_mutex_init(pthread_mutex_t *restrict mutex,
- const pthread_mutexattr_t *restrict attr);
功能:互斥锁初始化
参数:
mutex:互斥锁空间首地址
attr:互斥锁的属性(默认为NULL)
返回值:
成功返回0
失败返回错误码
int pthread_mutex_destroy(pthread_mutex_t *mutex);
功能:互斥锁销毁
参数:
mutex:互斥锁空间首地址
返回值:
成功返回0
失败返回错误码
int pthread_mutex_lock(pthread_mutex_t *mutex);
功能:上锁
int pthread_mutex_unlock(pthread_mutex_t *mutex);
功能:解锁
加锁解锁中间的代码称为临界资源、临界区
同一时刻临界资源不能同时执行,只能执行其中一个临界资源代码
CPU最小的一次不能被任务调度打断的操作称为原子操作
互斥锁只能解决资源竞争的问题,无法同步代码(没有先后执行的顺序关系)
定义三个整型的全局变量Num1, Num2,val,创建两个线程,一个线程循环令Num1=val,Num2=val,val自加;另一个线程,循环判断:当Num1不等于Num2的时候,输出Num1和Num2的值。利用互斥锁,让Num1始终等于Num2,使终端没有输出。
- #include "head.h"
-
- int val = 0;
- int Num1 = 0;
- int Num2 = 0;
- pthread_mutex_t lock;
-
- void *thread1(void *arg)
- {
- while(1)
- {
- pthread_mutex_lock(&lock);
- Num1 = val;
- Num2 = val;
- pthread_mutex_unlock(&lock);
- val++;
- }
- return NULL;
- }
- void *thread2(void *arg)
- {
- while(1)
- {
- pthread_mutex_lock(&lock);
- if(Num1 != Num2)
- {
- printf("Num1 = %d, Num2 = %d\n", Num1, Num2);
- }
- pthread_mutex_unlock(&lock);
- }
- return NULL;
- }
-
-
- int main(void)
- {
- pthread_t tid1;
- pthread_t tid2;
-
- pthread_mutex_init(&lock, NULL);
-
- pthread_create(&tid1, NULL, thread1, NULL);
- pthread_create(&tid2, NULL, thread2, NULL);
-
- pthread_join(tid1, NULL);
- pthread_join(tid2, NULL);
-
- pthread_mutex_destroy(&lock);
-
- return 0;
- }
多线程操作互斥锁,导致多个线程均违法向下执行的状态称为死锁状态,简称为死锁
1. 互斥条件
2. 不可剥夺条件
3. 请求保持
4. 循环等待
1. pthread_mutex_trylock 替代 pthread_mutex_lock
2. 加锁顺序保持一致
信号量是一种资源,可以被初始化、申请、释放、销毁
P操作:申请资源
V操作:释放资源
int sem_init(sem_t *sem, int pshared, unsigned int value);
功能:初始化信号量
参数:
sem:信号量空间首地址
pshared:为0的话,是一个进程中的所有线程间共享;非0的话,则是进程间共享
value:初始化的值
返回值:
成功返回0
失败返回-1
int sem_destroy(sem_t *sem);
功能:信号量的销毁
参数:
sem:信号量空间首地址
返回值:
成功返回0
失败返回-1
int sem_wait(sem_t *sem);
功能:申请信号量
int sem_post(sem_t *sem);
功能:释放信号量
1. 创建三个线程分别循环打印 A B C,要求打印出来的顺序总是 A -> B -> C
- #include "head.h"
-
- sem_t sem_a;
- sem_t sem_b;
- sem_t sem_c;
-
- void *thread1(void* arg)
- {
- while(1)
- {
- sem_wait(&sem_a);
- printf("A\n");
- sem_post(&sem_b);
- }
-
- return NULL;
- }
- void *thread2(void* arg)
- {
- while(1)
- {
- sem_wait(&sem_b);
- printf("B\n");
- sem_post(&sem_c);
- }
-
- return NULL;
- }
- void *thread3(void* arg)
- {
- while(1)
- {
- sem_wait(&sem_c);
- printf("C\n");
- sem_post(&sem_a);
- }
-
- return NULL;
- }
-
- int main(void)
- {
- int i = 0;
- pthread_t tid[3];
- void *(*p[3])(void *) = {thread1, thread2, thread3};
-
- sem_init(&sem_a, 0, 1);
- sem_init(&sem_b, 0, 0);
- sem_init(&sem_c, 0, 0);
-
- for(i = 0; i < 3; i++)
- {
- pthread_create(&tid[i], NULL, p[i], NULL);
- }
-
- for(i = 0; i < 3; i++)
- {
- pthread_join(tid[i], NULL);
- }
-
- sem_destroy(&sem_a);
- sem_destroy(&sem_b);
- sem_destroy(&sem_c);
-
- return 0;
-
- }
- #include <stdio.h>
-
- struct student
- {
- char number[20];
- int testbit;
- int exambit;
- };
-
- int GetStudentBit(struct student *pstu, int maxlen)
- {
- int n = 0;
- int i = 0;
-
- scanf("%d", &n);
-
- if(n > maxlen)
- {
- perror("Over to limit");
- return -1;
- }
-
- for(i = 0; i < n; i++)
- {
- scanf("%s %d %d", pstu[i].number, &pstu[i].testbit, &pstu[i].exambit);
- }
-
- return n;
- }
- int GetFoundBit(int *pbit, int maxlen)
- {
- int m = 0;
- int i = 0;
-
- scanf("%d", &m);
-
- if(m > maxlen)
- {
- perror("Over to limit");
- return -1;
- }
-
- for(i = 0; i < m; i++)
- {
- scanf("%d", &pbit[i]);
-
- }
- return m;
- }
-
- int PrintStudentBit(struct student *pstu, int curlen, int *pfound, int m)
- {
- int i = 0;
- int j = 0;
-
- for(i = 0; i < m; i++)
- {
- for(j = 0; j < curlen; j++)
- {
- if(pstu[j].testbit == pfound[i])
- {
- printf("%s %d\n", pstu[j].number, pstu[j].exambit);
- }
- }
- }
-
- return 0;
-
- }
-
- int main(void)
- {
- struct student stu[1000];
- int curlen = 0;
- int bitinfo[1000];
- int foundnum = 0;
-
- curlen = GetStudentBit(stu, 1000);
- foundnum = GetFoundBit(bitinfo, 1000);
-
- PrintStudentBit(stu, curlen, bitinfo, foundnum);
-
- return 0;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。