当前位置:   article > 正文

虚拟环境中用Anaconda安装显卡CUDA驱动与CUDA运行版本匹配_cuda和anaconda的版本对应

cuda和anaconda的版本对应

问题:运行程序时报错 InternalError: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version,描述了显卡驱动与CUDA版本不匹配的问题。

目的:解决版本不匹配的问题。

参考:https://blog.csdn.net/weixin_36474809/article/details/87804903

目录

一、当前版本查看

1.1 查看CUDA驱动版本

1.2 查看base environment中CUDA运行版本

1.3 查看当前虚拟环境中CUDA版本

二、安装对应

2.1 安装

2.2 检验


  1. name: GeForce GTX 1080 major: 6 minor: 1 memoryClockRate(GHz): 1.835
  2. pciBusID: 0000:83:00.0
  3. totalMemory: 7.92GiB freeMemory: 1.96GiB
  4. 2019-02-20 20:17:15.278289: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0, 1, 2, 3
  5. Traceback (most recent call last):
  6. File "config.py", line 214, in <module>
  7. args.func(args)
  8. File "config.py", line 147, in train
  9. dnnlib.submission.submit.submit_run(submit_config, **train_config)
  10. File "/home/xxr2019/NVlabs_noise2noise/dnnlib/submission/submit.py", line 296, in submit_run
  11. run_wrapper(submit_config)
  12. File "/home/xxr2019/NVlabs_noise2noise/dnnlib/submission/submit.py", line 249, in run_wrapper
  13. util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs)
  14. File "/home/xxr2019/NVlabs_noise2noise/dnnlib/util.py", line 232, in call_func_by_name
  15. return func_obj(*args, **kwargs)
  16. File "/home/xxr2019/NVlabs_noise2noise/train.py", line 76, in train
  17. tfutil.init_tf(config.tf_config)
  18. File "/home/xxr2019/NVlabs_noise2noise/dnnlib/tflib/tfutil.py", line 77, in init_tf
  19. create_session(config_dict, force_as_default=True)
  20. File "/home/xxr2019/NVlabs_noise2noise/dnnlib/tflib/tfutil.py", line 100, in create_session
  21. session = tf.Session(config=config)
  22. File "/home/jcx/.conda/envs/n2n/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1551, in __init__
  23. super(Session, self).__init__(target, graph, config=config)
  24. File "/home/jcx/.conda/envs/n2n/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 676, in __init__
  25. self._session = tf_session.TF_NewSessionRef(self._graph._c_graph, opts)
  26. tensorflow.python.framework.errors_impl.InternalError: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version

一、当前版本查看

1.1 查看CUDA驱动版本

驱动版本即为cuda driver version

输入nvidia-smi,看到我们服务器上的为:

NVIDIA-SMI 375.26                 Driver Version: 375.26

输入cat /proc/driver/nvidia/version

NVRM version: NVIDIA UNIX x86_64 Kernel Module  375.26  Thu Dec  8 18:36:43 PST 2016
GCC version:  gcc version 4.8.4 (Ubuntu 4.8.4-2ubuntu1~14.04.3)

1.2 查看base environment中CUDA运行版本

运行版本即为cuda runtime version,是在python中安装的cudatoolkit和cudnn程序包的版本

  1. (n2n) jcx@smart-dsp:~/Desktop/xxr2019/NVlabs_noise2noise$ cat /usr/local/cuda/version.txt
  2. CUDA Version 8.0.61
  3. (n2n) jcx@smart-dsp:~/Desktop/xxr2019/NVlabs_noise2noise$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
  4. #define CUDNN_MAJOR 6
  5. #define CUDNN_MINOR 0
  6. #define CUDNN_PATCHLEVEL 21
  7. --
  8. #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
  9. #include "driver_types.h"

 从该图来看,基础环境之中对应关系是没有问题的。

1.3 查看当前虚拟环境中CUDA版本

输入pip list即可看到相应的CUDA,但是在此指令之中,没有看到相应的CUDA版本,可能当前版本中CUDA未安装。

或者输入conda list,看到我们的版本为:我们版本为当前最新版本CUDA,因此需要更新驱动到最新版本。

cudatoolkit               9.2                           0
cudnn                     7.3.1                 cuda9.2_0

二、安装对应

2.1 安装

我们看出是CUDA版本过于新,驱动版本不够新,因此我们安装旧版本的CUDA运行版本,

    安装cuda:conda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/

  1. Downloading and Extracting Packages
  2. cudatoolkit-8.0 | 322.4 MB | ####################################################################### | 100%
  3. Preparing transaction: done
  4. Verifying transaction: done
  5. Executing transaction: done

    安装cudnn:conda install cudnn=7.0.5 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

  1. Preparing transaction: done
  2. Verifying transaction: done
  3. Executing transaction: done

2.2 检验

输入conda list,看到相应的版本变回与驱动对应的版本

cudatoolkit               8.0                           3    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
cudnn                     7.0.5                 cuda8.0_0    https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/ma

2.3 tensorflow版本安装

一般情况下,版本变动也需要重新安装tensorflow。以免程序报错。

conda install tensorflow-gpu

 

 

相关Linux及环境配置

常用Linux指令汇总

Linux中显卡用户管理相关应用及命令行

macOS上运行python及配置相应环境

macOS上用PyCharm本地配置Anaconda环境

客户端配置Hadoop并运用SLURM GPU集群与HDFS文件系统

   SSH相关

windows PC用SSH连接Ubuntu14.04的配置与方法

macOS与CentOS之间互传文件(iTerm2与lrzsz)

macOS系统用SSH链接CentOS服务器

   环境配置相关

在CentOS 6.3上配置PyTorch与gcc

CentOS 6.3安装anaconda并配置pytorch与cuda

Ubuntu14.04安装Anaconda3-2018.12-x86_64

运用Anaconda对python 3.6与tensorflow-gpu与pip环境配置

虚拟环境中用Anaconda安装显卡CUDA驱动与CUDA运行版本匹配

虚拟机上安装openCV

macbook操作与快捷键个人查阅汇总

docker安装及环境容器上传

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/202206
推荐阅读
相关标签
  

闽ICP备14008679号