赞
踩
日常的数据分析中,经常要根据各种不同的条件从数据集中筛选出相应的数据记录,再进行提取、替换、修改和分析等操作。因此筛选是数据分析中使用频率最高的操作之一。在刚开始做数据分析的时候,常常是使用for循环在数据集中进行条件筛选,导致代码比较冗长且效率不高。本文总结了在python中常用的并且使用效率比较高的几种数据筛选函数如:isin()、query()、contains()、loc()等,并且展示了它们单独使用或搭配一起使用的实践效果。
2.1 简单的筛选方法:
单一的筛选:条件范围可以是数值或字符串
df[df[“column_name”] == value]
多字段的筛选(又称为复合条件的筛选): 多个不同的特征列,并且条件可以对应不同的数值或字符串
df[(df[“column_name1”] <= value) & (df[“column_name2”] == str)]
2.2 isin函数:df[df[“column_name”].isin(li)] (# li = [20, 25, 27] 或 li = np.arange(20, 30))
根据从isin函数传入的列表(li),筛选出与列表中包含的数值或字符串相同的数据记录, 用法有点类似sql中的"in"
2.3 query函数:df.query("(column_name1 == ‘str1’) & (column_name2 == ‘str2’)")
根据query中引入的不同字段(str1,str2等)和条件,筛选出同时能满足这些要求的数据记录
2.4 contains函数:df[df[“column_name”].str.contains(“str”)]
筛选出所有含有(str)的数据记录, 用法类似于sql中的"contains"
2.5 loc函数:df.loc[df["column_name] <= value]
根据特征属性(列名)或索引标签筛选数据:df.loc[columns 筛选条件] 或df.loc[index 筛选条件];
同时根据索引标签和特征属性(列名)筛选数据:df.loc[index 筛选条件,columns 筛选条件]
2.6 筛选函数之间还能根据各自的特点搭配使用
数据准备:数据按行筛选(数据记录)并提取数据
import numpy as np
import pandas as pd
df = pd.DataFrame({"name": ["A001", "A002", "B001", "A001_K", "C002", "B001_K", "B001"],
"protein": [25, 28, 45, 22, 60, 40, 27],
"Qty": [85, 90, 75, 80, 30, 50, 30],
"rank": ["1st", "1st", "1st", "2nd", "1st", "1st", "2nd"]})
df
# 1 简单的条件筛选:单一条件筛选
data = df[df["protein"] <= 30]
data
代码描述:df.loc[df[“protein”] <= 30] 与 df[df[“protein”] <= 30]的运行结果是一样的。
# 2 多重条件筛选 -- 筛选的条件是数值
# 筛选并提取protein 在40-50之间的记录(符合条件)
data = df[(df["protein"] >= 40) & (df["protein"] <= 50)]
data
# 3 多重条件筛选 -- 筛选的条件有数值和字符串
# 筛选出蛋白质含量大于30并且产品评级为"1st"的数据
data = df[(df["protein"] >= 30) & (df["rank"] == "1st")]
data
返回的结果是根据从isin函数传入的列表(li),筛选出与列表中包含的数值或字符串相同的数据记录, 用法有点类似sql中的"in"
# 筛选出与列表中的数值或字符串相等的数据记录
# li = np.arange(20, 30)
li = [25, 60, 45, 40]
data = df[df["protein"].isin(li)]
data
返回的结果是根据query中引入的不同字段(str1,str2)和条件,筛选出同时能满足这些要求的数据记录
# 筛选出名称为“A001”或“B001”,并且级别都是“1st”的数据记录
data = df.query("(name=='A001'| name=='B001') & (rank == '1st')")
data
温馨提示:在使用query函数时,所有的表达内容都必须用引号标识出来,并且字符串的引号与表达式的引号需要区分出来(即遵从使用双引号与单引号的套用规则)。另外,特征列名称是不需要使用引号标注的,这可以理解为是直接调用了列表,因此列名称不需要注释。
# 1 筛选出所有名称中还有“K”的数据记录
data = df[df["name"].str.contains("K")]
data
# 2 筛选出级别中含有"st", 并且名字中含有"K"的数据记录
data = df[(df["rank"].str.contains("st") & df["name"].str.contains("K"))]
data
# 5. loc() 函数 -- 根据标签和特征列名进行数据筛选
# 5.1 单一条件的筛选
data = df.loc[df["protein"] <=30] # 与df[df["protein"] <=30]的运行结果是一致的!
data
小结:这与之前说的 df[df[“protein”] <=30] 的运行结果是一致的!
# 5.2 复合条件的筛选
# 筛选出名称为"B001"并且蛋白质含量低于30的数据记录
data = df.loc[(df["name"]=="B001") & (df["protein"]<=30)]
data
# 5.3 使用loc函数同时对索引标签和特征属性(列名)进行数据筛选
# 注意:当使用loc函数根据索引标签和特征列名进行筛选时,需要设定相应的索引标签。本测试会先将名称更换为索引值再进行筛选(使用set_index()函数将特征列名转换为索引值)
# 筛选出名称为"B001"的所有数据记录
test = df.copy().set_index("name")
test.loc["B001", :]
# 5.4 筛选出名称为"B001"和“A001”的蛋白质和评级数据
test_ = test.loc[["B001", "A001"], ["protein", "rank"]]
test_
上述介绍的筛选方法和函数是可以被搭配在一起使用,并且效果很不错!
# 1 筛选出蛋白质小于等于30,并且级别是含有"2nd"的数据记录
data = df[(df["protein"] <=30) & df["rank"].str.contains("2nd")]
data
# 2 筛选出蛋白质的含量是列表中的数值,并且名称中含有"K"的数据记录
li = [25, 60, 45, 40, 22]
data = df[(df["protein"].isin(li)) & (df["name"].str.contains("K"))]
data
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。