当前位置:   article > 正文

[Mysql] 如何实现按距离排序、范围查找_sql距离排序

sql距离排序

总结:

1.适合场景: 查询范围为某个具体距离范围内,如1公里范围内
2.缺点:查找的是距离范围内的,如果要按距离排序,sql语句在下文所属中加上下面语句
order by abs(htl.lng -" + lng + ")+abs(htl.lat -"+lat+")

3.我尝试了区间查找,采用spatial4j.jar

- 源码: https://github.com/locationtech/spatial4j

- 下载jar包:http://download.locationtech.org/spatial4j/0_6/?d

4. spatial的原理图
不是矩形的范围,是圆型的范围



下面转载自文章: 如何实现按距离排序、范围查找

简介

现在几乎所有的O2O应用中都会存在“按范围搜素、离我最近、显示距离”等等基于位置的交互,那这样的功能是怎么实现的呢?本文提供的实现方式,适用于所有数据库

实现

为了方便下面说明,先给出一个初始表结构,我使用的是MySQL

  1. CREATE TABLE `customer` (
  2. `id` INT(11) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '自增主键',
  3. `name` VARCHAR(5) NOT NULL COMMENT '名称',
  4. `lon` DOUBLE(9,6) NOT NULL COMMENT '经度',
  5. `lat` DOUBLE(8,6) NOT NULL COMMENT '纬度',
  6. PRIMARY KEY (`id`)
  7. )
  8. COMMENT='商户表'
  9. CHARSET=utf8mb4
  10. ENGINE=InnoDB
  11. ;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

实现过程主要分为四步: 
1. 搜索 
在数据库中搜索出接近指定范围内的商户,如:搜索出1公里范围内的。 
2. 过滤 
搜索出来的结果可能会存在超过1公里的,需要再次过滤。如果对精度没有严格要求,可以跳过。 
3. 排序 
距离由近到远排序。如果不需要,可以跳过。 
4. 分页 
如果需要2、3步,才需要对分页特殊处理。如果不需要,可以在第1步直接SQL分页。

第1步数据库完成,后3步应用程序完成。

step1 搜索

搜索可以用下面两种方式来实现。

区间查找

customer表中使用两个字段存储了经度和纬度,如果提前计算出经纬度的范围,然后在这两个字段上加上索引,那搜索性能会很不错。 
那怎么计算出经纬度的范围呢?已知条件是移动设备所在的经纬度,还有满足业务要求的半径,这很像初中的一道平面几何题:给定圆心坐标和半径,求该圆外切正方形四个顶点的坐标。而我们面对的是一个球体,可以使用spatial4j来计算。

  1. <dependency>
  2. <groupId>com.spatial4j</groupId>
  3. <artifactId>spatial4j</artifactId>
  4. <version>0.5</version>
  5. </dependency>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
  1. // 移动设备经纬度
  2. double lon = 116.312528, lat = 39.983733;
  3. // 千米
  4. int radius = 1;
  5. SpatialContext geo = SpatialContext.GEO;
  6. Rectangle rectangle = geo.getDistCalc().calcBoxByDistFromPt(
  7. geo.makePoint(lon, lat), radius * DistanceUtils.KM_TO_DEG, geo, null);
  8. System.out.println(rectangle.getMinX() + "-" + rectangle.getMaxX());// 经度范围
  9. System.out.println(rectangle.getMinY() + "-" + rectangle.getMaxY());// 纬度范围
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

计算出经纬度范围之后,SQL是这样:

  1. SELECT id, name
  2. FROM customer
  3. WHERE (lon BETWEEN ? AND ?) AND (lat BETWEEN ? AND ?);
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

需要给lon、lat两个字段建立联合索引:

INDEX `idx_lon_lat` (`lon`, `lat`)
 
 
  • 1
  • 1

geohash

geohash的原理不讲了,详细可以看这篇文章,讲的很详细。geohash算法能把二维的经纬度编码成一维的字符串,它的特点是越相近的经纬度编码后越相似,所以可以通过前缀like的方式去匹配周围的商户。 
customer表要增加一个字段,来存储每个商户的geohash编码,并且建立索引。

  1. CREATE TABLE `customer` (
  2. `id` INT(11) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT '自增主键',
  3. `name` VARCHAR(5) NOT NULL COMMENT '名称' COLLATE 'latin1_swedish_ci',
  4. `lon` DOUBLE(9,6) NOT NULL COMMENT '经度',
  5. `lat` DOUBLE(8,6) NOT NULL COMMENT '纬度',
  6. `geo_code` CHAR(12) NOT NULL COMMENT 'geohash编码',
  7. PRIMARY KEY (`id`),
  8. INDEX `idx_geo_code` (`geo_code`)
  9. )
  10. COMMENT='商户表'
  11. CHARSET=utf8mb4
  12. ENGINE=InnoDB
  13. ;
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

在新增或修改一个商户的时候,维护好geo_code,那geo_code怎么计算呢?spatial4j也提供了一个工具类GeohashUtils.encodeLatLon(lat, lon),默认精度是12位。这个存储做好后,就可以通过geo_code去搜索了。拿到移动设备的经纬度,计算geo_code,这时可以指定精度计算,那指定多长呢?我们需要一个geo_code长度和距离的对照表:

geohash length width height
1 5,009.4km 4,992.6km
2 1,252.3km 624.1km
3 156.5km 156km
4 39.1km 19.5km
5 4.9km 4.9km
6 1.2km 609.4m
7 152.9m 152.4m
8 38.2m 19m
9 4.8m 4.8m
10 1.2m 59.5cm
11 14.9cm 14.9cm
12 3.7cm 1.9cm

https://en.wikipedia.org/wiki/Geohash#Cell_Dimensions

假设我们的需求是1公里范围内的商户,geo_code的长度设置为5就可以了,GeohashUtils.encodeLatLon(lat, lon, 5)。计算出移动设备经纬度的geo_code之后,SQL是这样:

  1. SELECT id, name
  2. FROM customer
  3. WHERE geo_code LIKE CONCAT(?, '%');
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

这样会比区间查找快很多,并且得益于geo_code的相似性,可以对热点区域做缓存。但这样使用geohash还存在一个问题,geohash最终是在地图上铺上了一个网格,每一个网格代表一个geohash值,当传入的坐标接近当前网格的边界时,用上面的搜索方式就会丢失它附近的数据。比如下图中,在绿点的位置搜索不到白家大院,绿点和白家大院在划分的时候就分到了两个格子中。 
这里写图片描述 
解决这个问题思路也比较简单,我们查询时,除了使用绿点的geohash编码进行匹配外,还使用周围8个网格的geohash编码,这样可以避免这个问题。那怎么计算出周围8个网格的geohash呢,可以使用geohash-java来解决。

  1. <dependency>
  2. <groupId>ch.hsr</groupId>
  3. <artifactId>geohash</artifactId>
  4. <version>1.3.0</version>
  5. </dependency>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 1
  • 2
  • 3
  • 4
  • 5
  1. // 移动设备经纬度
  2. double lon = 116.312528, lat = 39.983733;
  3. GeoHash geoHash = GeoHash.withCharacterPrecision(lat, lon, 10);
  4. // 当前
  5. System.out.println(geoHash.toBase32());
  6. // N, NE, E, SE, S, SW, W, NW
  7. GeoHash[] adjacent = geoHash.getAdjacent();
  8. for (GeoHash hash : adjacent) {
  9. System.out.println(hash.toBase32());
  10. }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

最终我们的sql变成了这样:

  1. SELECT id, name
  2. FROM customer
  3. WHERE geo_code LIKE CONCAT(?, '%')
  4. OR geo_code LIKE CONCAT(?, '%')
  5. OR geo_code LIKE CONCAT(?, '%')
  6. OR geo_code LIKE CONCAT(?, '%')
  7. OR geo_code LIKE CONCAT(?, '%')
  8. OR geo_code LIKE CONCAT(?, '%')
  9. OR geo_code LIKE CONCAT(?, '%')
  10. OR geo_code LIKE CONCAT(?, '%')
  11. OR geo_code LIKE CONCAT(?, '%');
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

原来的1次查询变成了9次查询,性能肯定会下降,这里可以优化下。还用上面的需求场景,搜索1公里范围内的商户,从上面的表格知道,geo_code长度为5时,网格宽高是4.9KM,用9个geo_code查询时,范围太大了,所以可以将geo_code长度设置为6,即缩小了查询范围,也满足了需求。还可以继续优化,在存储geo_code时,只计算到6位,这样就可以将sql变成这样:

  1. SELECT id, name
  2. FROM customer
  3. WHERE geo_code IN (?, ?, ?, ?, ?, ?, ?, ?, ?);
  • 1
  • 2
  • 3
  • 1
  • 2
  • 3

这样将前缀匹配换成了直接匹配,速度会提升很多。

step2 过滤

上面两种搜索方式,都不是精确搜索,只是尽量缩小搜索范围,提升响应速度。所以需要在应用程序中做过滤,把距离大于1公里的商户过滤掉。计算距离同样使用spatial4j

  1. // 移动设备经纬度
  2. double lon1 = 116.3125333347639, lat1 = 39.98355521792821;
  3. // 商户经纬度
  4. double lon2 = 116.312528, lat2 = 39.983733;
  5. SpatialContext geo = SpatialContext.GEO;
  6. double distance = geo.calcDistance(geo.makePoint(lon1, lat1), geo.makePoint(lon2, lat2))
  7. * DistanceUtils.DEG_TO_KM;
  8. System.out.println(distance);// KM
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

过滤代码就不写了,遍历一遍搜索结果即可。

step3 排序

同样,排序也需要在应用程序中处理。排序基于上面的过滤结果做就可以了Collections.sort(list, comparator)

step4 分页

如果需要2、3步,只能在内存中分页,做法也很简单,可以参考这篇文章

总结

全文的重点都在于搜索如何实现,更好的利用数据库的索引,两种搜索方式以百万数据量为分割线,第一种适用于百万以下,第二种适用于百万以上,未经过严格验证。可能有人会有疑问,过滤和排序都在应用层做,内存占用会不会很严重?这是个潜在问题,但大多数情况下不会。看我们大部分的应用场景,都是单一种类POI(Point Of Interest)的搜索,如酒店、美食、KTV、电影院等等,这种数据密度是很小,1公里内的酒店,能有多少家,50家都算多的,所以最终要看具体业务数据密度。本文没有分析原理,只讲了具体实现,有关分析的文章可以看参考链接。


参考

http://www.infoq.com/cn/articles/depth-study-of-Symfony2 
http://tech.meituan.com/lucene-distance.html 
http://blog.csdn.net/liminlu0314/article/details/8553926 
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates 
http://www.cnblogs.com/LBSer/p/3310455.html 
http://cevin.net/geohash/

本文来自:高爽|Coder,原文地址:http://blog.csdn.net/ghsau/article/details/50591932,转载请注明。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/230527
推荐阅读
相关标签
  

闽ICP备14008679号