赞
踩
#注意力机制 #空间注意力机制 import torch from torch import nn class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) # 7,3 3,1 self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) #通道注意力机制 import torch from torch import nn class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) if __name__ == '__main__': CA = ChannelAttention(32) data_in = torch.randn(8,32,300,300) data_out = CA(data_in) print(data_in.shape) # torch.Size([8, 32, 300, 300]) print(data_out.shape) # torch.Size([8, 32, 1, 1]) # CBAM注意力机制 import torch from torch import nn class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) # 7,3 3,1 self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class CBAM(nn.Module): def __init__(self, in_planes, ratio=16, kernel_size=7): super(CBAM, self).__init__() self.ca = ChannelAttention(in_planes, ratio) self.sa = SpatialAttention(kernel_size) def forward(self, x): out = x * self.ca(x) result = out * self.sa(out) return result # SE注意力机制: from torch import nn import torch class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) # return x * y if __name__ == '__main__': print('testing ChannelAttention'.center(100,'-')) torch.manual_seed(seed=20200910) CA = ChannelAttention(32) data_in = torch.randn(8,32,300,300) data_out = CA(data_in) print(data_in.shape) # torch.Size([8, 32, 300, 300]) print(data_out.shape) # torch.Size([8, 32, 1, 1]) if __name__ == '__main__': print('testing SpatialAttention'.center(100,'-')) torch.manual_seed(seed=20200910) SA = SpatialAttention(7) data_in = torch.randn(8,32,300,300) data_out = SA(data_in) print(data_in.shape) # torch.Size([8, 32, 300, 300]) print(data_out.shape) # torch.Size([8, 1, 300, 300]) if __name__ == '__main__': print('testing CBAM'.center(100,'-')) torch.manual_seed(seed=20200910) cbam = CBAM(32, 16, 7) data_in = torch.randn(8,32,300,300) data_out = cbam(data_in) print(data_in.shape) # torch.Size([8, 32, 300, 300]) print(data_out.shape) # torch.Size([8, 1, 300, 300]) if __name__ == '__main__': print('testing seattention'.center(100,'-')) torch.manual_seed(seed=20200910) data_in = torch.randn(8,32,300,300) SE = SELayer(32) data_out = SE(data_in) print(data_in.shape) # torch.Size([8, 32, 300, 300]) print(data_out.shape) # torch.Size([8, 32, 300, 300])
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。