当前位置:   article > 正文

C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo_stable diffusion c#

stable diffusion c#

目录

介绍

效果

CPU

GPU

模型信息

项目

代码

下载 


C# SwinV2 Stable Diffusion 提示词反推 Onnx Demo

介绍

模型出处github地址:https://github.com/SmilingWolf/SW-CV-ModelZoo

模型下载地址:https://huggingface.co/SmilingWolf/wd-v1-4-swinv2-tagger-v2

效果

CPU

GPU

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input_1:0
tensor:Float[1, 448, 448, 3]
---------------------------------------------------------------

Outputs
-------------------------
name:predictions_sigmoid
tensor:Float[1, 9083]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        StringBuilder sb = new StringBuilder();

        public string[] class_names;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            textBox1.Text = "";
            sb.Clear();
            Application.DoEvents();

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array;

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(max_image, resize_image, new OpenCvSharp.Size(448, 448));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, y, x, 0] = resize_image.At<Vec3b>(y, x)[0];
                    input_tensor[0, y, x, 1] = resize_image.At<Vec3b>(y, x)[1];
                    input_tensor[0, y, x, 2] = resize_image.At<Vec3b>(y, x)[2];
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input_1:0", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            List<ScoreIndex> ltResult = new List<ScoreIndex>();
            ScoreIndex temp;
            for (int i = 0; i < result_array.Length; i++)
            {
                temp = new ScoreIndex(i, result_array[i]);
                ltResult.Add(temp);
            }

            //根据分数倒序排序,取前14个
            var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(14);

            foreach (var item in SortedByScore)
            {
                sb.Append(class_names[item.Index] + ",");
            }
            sb.Length--; // 将长度减1来移除最后一个字符

            sb.AppendLine("");
            sb.AppendLine("------------------");
            
            // 只取分数最高的
            // float max = result_array.Max();
            // int maxIndex = Array.IndexOf(result_array, max);
            // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
           
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/model.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 448, 448, 3 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/test.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            List<string> str = new List<string>();
            StreamReader sr = new StreamReader("model/lable.txt");
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                str.Add(line);
            }
            class_names = str.ToArray();
        }

    }
}

  1. using Microsoft.ML.OnnxRuntime;
  2. using Microsoft.ML.OnnxRuntime.Tensors;
  3. using OpenCvSharp;
  4. using System;
  5. using System.Collections.Generic;
  6. using System.Drawing;
  7. using System.IO;
  8. using System.Linq;
  9. using System.Text;
  10. using System.Windows.Forms;
  11. namespace Onnx_Demo
  12. {
  13. public partial class Form1 : Form
  14. {
  15. public Form1()
  16. {
  17. InitializeComponent();
  18. }
  19. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
  20. string image_path = "";
  21. DateTime dt1 = DateTime.Now;
  22. DateTime dt2 = DateTime.Now;
  23. string model_path;
  24. Mat image;
  25. SessionOptions options;
  26. InferenceSession onnx_session;
  27. Tensor<float> input_tensor;
  28. List<NamedOnnxValue> input_container;
  29. IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
  30. DisposableNamedOnnxValue[] results_onnxvalue;
  31. Tensor<float> result_tensors;
  32. StringBuilder sb = new StringBuilder();
  33. public string[] class_names;
  34. private void button1_Click(object sender, EventArgs e)
  35. {
  36. OpenFileDialog ofd = new OpenFileDialog();
  37. ofd.Filter = fileFilter;
  38. if (ofd.ShowDialog() != DialogResult.OK) return;
  39. pictureBox1.Image = null;
  40. image_path = ofd.FileName;
  41. pictureBox1.Image = new Bitmap(image_path);
  42. textBox1.Text = "";
  43. image = new Mat(image_path);
  44. }
  45. private void button2_Click(object sender, EventArgs e)
  46. {
  47. if (image_path == "")
  48. {
  49. return;
  50. }
  51. button2.Enabled = false;
  52. textBox1.Text = "";
  53. sb.Clear();
  54. Application.DoEvents();
  55. //图片缩放
  56. image = new Mat(image_path);
  57. int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
  58. Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
  59. Rect roi = new Rect(0, 0, image.Cols, image.Rows);
  60. image.CopyTo(new Mat(max_image, roi));
  61. float[] result_array;
  62. // 将图片转为RGB通道
  63. Mat image_rgb = new Mat();
  64. Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
  65. Mat resize_image = new Mat();
  66. Cv2.Resize(max_image, resize_image, new OpenCvSharp.Size(448, 448));
  67. // 输入Tensor
  68. for (int y = 0; y < resize_image.Height; y++)
  69. {
  70. for (int x = 0; x < resize_image.Width; x++)
  71. {
  72. input_tensor[0, y, x, 0] = resize_image.At<Vec3b>(y, x)[0];
  73. input_tensor[0, y, x, 1] = resize_image.At<Vec3b>(y, x)[1];
  74. input_tensor[0, y, x, 2] = resize_image.At<Vec3b>(y, x)[2];
  75. }
  76. }
  77. //input_tensor 放入一个输入参数的容器,并指定名称
  78. input_container.Add(NamedOnnxValue.CreateFromTensor("input_1:0", input_tensor));
  79. dt1 = DateTime.Now;
  80. //运行 Inference 并获取结果
  81. result_infer = onnx_session.Run(input_container);
  82. dt2 = DateTime.Now;
  83. // 将输出结果转为DisposableNamedOnnxValue数组
  84. results_onnxvalue = result_infer.ToArray();
  85. // 读取第一个节点输出并转为Tensor数据
  86. result_tensors = results_onnxvalue[0].AsTensor<float>();
  87. result_array = result_tensors.ToArray();
  88. List<ScoreIndex> ltResult = new List<ScoreIndex>();
  89. ScoreIndex temp;
  90. for (int i = 0; i < result_array.Length; i++)
  91. {
  92. temp = new ScoreIndex(i, result_array[i]);
  93. ltResult.Add(temp);
  94. }
  95. //根据分数倒序排序,取前14
  96. var SortedByScore = ltResult.OrderByDescending(p => p.Score).ToList().Take(14);
  97. foreach (var item in SortedByScore)
  98. {
  99. sb.Append(class_names[item.Index] + ",");
  100. }
  101. sb.Length--; // 将长度减1来移除最后一个字符
  102. sb.AppendLine("");
  103. sb.AppendLine("------------------");
  104. // 只取分数最高的
  105. // float max = result_array.Max();
  106. // int maxIndex = Array.IndexOf(result_array, max);
  107. // sb.AppendLine(class_names[maxIndex]+" "+ max.ToString("P2"));
  108. sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
  109. textBox1.Text = sb.ToString();
  110. button2.Enabled = true;
  111. }
  112. private void Form1_Load(object sender, EventArgs e)
  113. {
  114. model_path = "model/model.onnx";
  115. // 创建输出会话,用于输出模型读取信息
  116. options = new SessionOptions();
  117. options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
  118. options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
  119. // 创建推理模型类,读取本地模型文件
  120. onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
  121. // 输入Tensor
  122. input_tensor = new DenseTensor<float>(new[] { 1, 448, 448, 3 });
  123. // 创建输入容器
  124. input_container = new List<NamedOnnxValue>();
  125. image_path = "test_img/test.jpg";
  126. pictureBox1.Image = new Bitmap(image_path);
  127. image = new Mat(image_path);
  128. List<string> str = new List<string>();
  129. StreamReader sr = new StreamReader("model/lable.txt");
  130. string line;
  131. while ((line = sr.ReadLine()) != null)
  132. {
  133. str.Add(line);
  134. }
  135. class_names = str.ToArray();
  136. }
  137. }
  138. }

下载 

源码下载

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/319731
推荐阅读