当前位置:   article > 正文

python图像人类检测_OpenCV人类行为识别(3D卷积神经网络)

def construct_set(self, train_por, test_por, window_size, label=0)

1. 3D卷积神经网络

相比于2D 卷积神经网络,3D卷积神经网络更能很好的利用视频中的时序信息。因此,其主要应用视频、行为识别等领域居多。3D卷积神经网络是将时间维度看成了第三维。

人类行为识别的实际应用:

安防监控。(检测识别异常行为:如打架,偷东西等)

监视和培训新人工作来确保任务执行正确。(例如,鸡蛋灌饼制作程序:和面,擀面团,打鸡蛋,摊饼等动作)

判断检测食品服务人员是否按规定洗手。

自动对视频数据分类。

人类的行为识别,在实际生活环境中,在不同的场景会存在着背景杂乱、遮挡和视角变化等等情况,对于人来说,是很容易就可以辨识出来,但对于计算机,就不是一件简单的事了,比如目标尺度变化和视觉改变等。

2. 人类行为识别模型

abseiling

air drumming

answering questions

applauding

applying cream

archery

arm wrestling

arranging flowers

assembling computer

auctioning

baby waking up

baking cookies

balloon blowing

bandaging

barbequing

bartending

beatboxing

bee keeping

belly dancing

bench pressing

bending back

bending metal

biking through snow

blasting sand

blowing glass

blowing leaves

blowing nose

blowing out candles

bobsledding

bookbinding

bouncing on trampoline

bowling

braiding hair

breading or breadcrumbing

breakdancing

brush painting

brushing hair

brushing teeth

building cabinet

building shed

bungee jumping

busking

canoeing or kayaking

capoeira

carrying baby

...

import os

import numpy as np

import cv2 as cv

import argparse

from common import

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/335806
推荐阅读
相关标签
  

闽ICP备14008679号