赞
踩
基于贝叶斯对鸢尾花数据进行分类
- 1. python3.7
- 2. numpy >= '1.16.4'
- 3. sklearn >= '0.23.1'
- # import base package
-
- import warnings
- warnings.filterwarnings('ignore')
- import numpy as np
- from sklearn import datasets
-
- from sklearn.naive_bayes import GaussianNB
- from sklearn.model_selection import train_test_split
-
- # import data
- X, y = datasets.load_iris(return_X_y = True)
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
-
- # train
- clf = GaussianNB(var_smoothing = 1e-8)
- clf.fit(X_train, y_train)
- print(clf)
-
- # evaluate y_test == y_pred rate
- y_pred = clf.predict(X_test)
- acc = np.sum(y_test == y_pred) / X_test.shape[0]
- print('y_test:', y_test)
- print('y_pred:', y_pred)
- print('X_test:', X_test.shape[0])
- print('test acc: %.3f' % acc)
-
- # predict
- y_proba = clf.predict_proba(X_test[:1])
- print('pre:', clf.predict(X_test[:1])) # three class proba
- print('probability value:', y_proba) # choose max from the three
-
- print('X_test: \n', X_test[:10])
- y_proba = clf.predict_proba(X_test[:5])
- print('pre:', clf.predict(X_test[:5]))
- print('probability value:', y_proba)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。