赞
踩
sklearn.feature_extraction: 特征提取
该sklearn.feature_extraction模块处理从原始数据中提取特征。它目前包括从文本和图像中提取特征的方法。
用户指南:有关详细信息,请参阅特征提取部分。
feature_extraction.DictVectorizer(*[, ...])
将特征值映射列表转换为向量。
feature_extraction.FeatureHasher([...])
实现特征散列,也就是散列技巧。
从图像
该sklearn.feature_extraction.image子模块收集实用程序以从图像中提取特征。
feature_extraction.image.extract_patches_2d(...)
将 2D 图像重塑为补丁集合
feature_extraction.image.grid_to_graph(n_x, n_y)
像素到像素连接图。
feature_extraction.image.img_to_graph(图片,*)
像素到像素梯度连接图。
feature_extraction.image.reconstruct_from_patches_2d(...)
从它的所有补丁重建图像。
feature_extraction.image.PatchExtractor(*[, ...])
从图像集合中提取补丁。
来自文本
该sklearn.feature_extraction.text子模块收集实用程序以从文本文档构建特征向量。
feature_extraction.text.CountVectorizer(*[, ...])
将文本文档集合转换为令牌计数矩阵。
feature_extraction.text.HashingVectorizer(*)
将文本文档的集合转换为标记出现的矩阵。
feature_extraction.text.TfidfTransformer(*)
将计数矩阵转换为标准化的 tf 或 tf-idf 表示。
feature_extraction.text.TfidfVectorizer(*[, ...])
将原始文档集合转换为 TF-IDF 特征矩阵。
sklearn.feature_selection: 特征选择
该sklearn.feature_selection模块实现了特征选择算法。它目前包括单变量过滤器选择方法和递归特征消除算法。
用户指南:有关详细信息,请参阅功能选择部分。
feature_selection.GenericUnivariateSelect([...])
具有可配置策略的单变量特征选择器。
feature_selection.SelectPercentile([...])
根据最高分数的百分位选择特征。
feature_selection.SelectKBest([score_func, k])
根据 k 个最高分选择特征。
feature_selection.SelectFpr([score_func, alpha])
过滤器:根据 FPR 测试选择低于 alpha 的 pvalues。
feature_selection.SelectFdr([score_func, alpha])
过滤器:为估计的错误发现率选择 p 值。
feature_selection.SelectFromModel(估计,*)
基于重要性权重选择特征的元转换器。
feature_selection.SelectFwe([score_func, alpha])
过滤器:选择与 Family-wise error rate 对应的 p 值。
feature_selection.SequentialFeatureSelector(...)
执行顺序特征选择的转换器。
feature_selection.RFE(估计器,*[,...])
具有递归特征消除的特征排名。
feature_selection.RFECV(估计器,*[,...])
使用交叉验证进行递归特征消除以选择特征数量。
feature_selection.VarianceThreshold([临界点])
删除所有低方差特征的特征选择器。
feature_selection.chi2(X, y)
计算每个非负特征和类之间的卡方统计数据。
feature_selection.f_classif(X, y)
计算所提供样本的 ANOVA F 值。
feature_selection.f_regression(X, y, *[, ...])
返回 F 统计量和 p 值的单变量线性回归测试。
feature_selection.r_regression(X, y, *[, ...])
计算每个特征和目标的 Pearson 的 r。
feature_selection.mutual_info_classif(X, y, *)
估计离散目标变量的互信息。
feature_selection.mutual_info_regression(X, y, *)
估计连续目标变量的互信息。
feature_extraction.text.TfidVectorizer
例子:
>>> from sklearn.feature_extraction.text import CountVectorizer >>> corpus = [ ... 'This is the first document.', ... 'This document is the second document.', ... 'And this is the third one.', ... 'Is this the first document?', ... ] >>> vectorizer = CountVectorizer() >>> X = vectorizer.fit_transform(corpus) >>> vectorizer.get_feature_names_out() array(['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this'], ...) >>> print(X.toarray()) [[0 1 1 1 0 0 1 0 1] [0 2 0 1 0 1 1 0 1] [1 0 0 1 1 0 1 1 1] [0 1 1 1 0 0 1 0 1]] >>> vectorizer2 = CountVectorizer(analyzer='word', ngram_range=(2, 2)) >>> X2 = vectorizer2.fit_transform(corpus) >>> vectorizer2.get_feature_names_out() array(['and this', 'document is', 'first document', 'is the', 'is this', 'second document', 'the first', 'the second', 'the third', 'third one', 'this document', 'this is', 'this the'], ...) >>> print(X2.toarray()) [[0 0 1 1 0 0 1 0 0 0 0 1 0] [0 1 0 1 0 1 0 1 0 0 1 0 0] [1 0 0 1 0 0 0 0 1 1 0 1 0] [0 0 1 0 1 0 1 0 0 0 0 0 1]]
sklearn.feature_extraction.text.TfidfVectorizer
例子:
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> vectorizer = TfidfVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> vectorizer.get_feature_names_out()
array(['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third',
'this'], ...)
>>> print(X.shape)
(4, 9)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。